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Abstract

English
In this PhD, we study the impact of generative design tools on graphic
design and art and how such an approach differs from traditional digital
tools such as Adobe Photoshop. It poses the question if designers are
more efficient, explore a broader approach, discover new aesthetics
and if they are self-reliant.

We study our own approach and make art projects using generative
tools developed in-house. We study the approach that others have
taken through masterclasses and workshops, both with students and
professional designers.

This research helps to understand the scope of generative design tools
and can help shape the future of commonly used tools.

Dutch
In dit doctoraat onderzoeken we wat de impact is van generatieve
software op grafisch ontwerp en kunst, en hoe een dergelijke aanpak
verschilt van klassieke digitale gereedschappen zoals Adobe Photoshop.
We stellen de vraag of ontwerpers efficiënter zijn, een bredere aanpak
kunnen hanteren, een nieuwe esthetiek ontdekken en of ze binnen zo'n
omgeving zelfredzaam zijn.

We bestuderen onze eigen aanpak en maken kunstprojecten met
zelfgemaakte generatieve software. We bestuderen de aanpak van
anderen door masterclasses en workshops met studenten en
bevragingen van professionals.

Uit het onderzoek kunnen we de reikwijdte van software voor
generatieve vormgeving begrijpen en mee de toekomst bepalen voor de
digitale gereedschappen die vormgevers dagelijks gebruiken.
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Contributions

Software
NodeBox 1 (2004) is a Mac OS X application that lets you create
2-dimensional visuals using Python programming code. Graphics can be
animated or made interactive and can be exported to PDF or as
QuickTime movies. NodeBox 1 is described in Section 3.4.

NodeBox 2 (2010) was a cross-platform, visual node-based software
application used in creating generative designs and data visualisations.
It has since been superseded by NodeBox 3. It is described in Section
4.2.

NodeBox 3 (2012) is a cross-platform, visual node-based software
application used in creating generative designs and data visualisations.
It uses lists as its primary abstraction and list matching to create
variation. Its functionality is described in Section 4.4.

DataPipe (2014) is a utility application designed to sample, filter and
aggregate large datasets. It is described in Section 4.3.

NodeBox Live (2016) is a web-based visual node-based software
application. It is a port of the conceptual model of NodeBox 3 to
JavaScript. NodeBox Live is described in Section 4.5.

OpenType.js (2014) is a JavaScript library that can parse and read
TrueType and OpenType fonts. The rationale and implications for this
library are described in Section 4.6.

Logic Layout (2016) is a graphical vector editor build around random
ranges and constraints. We describe Logic Layout in Section 5.3.

Writing
Gravital: natural language processing for computer graphics (2013). 
Chapter for the book "Creativity and The Agile Mind: A
Multi-disciplinary Study of a Multi-faceted Phenomenon" (De Smedt,
2013). Described in Section 3.6.3.
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Artwork / Exhibitions
Traveling Letters (2012) — part of the "Traveling Letters" exhibition
organized in Lahti, Finland. Computer Installation. Technique: Scala,
Processing. (Figure 1)

arial.wtf (2013) — part of the "Traveling Letters — Typo Jazz" exhibition
organized in Vilnius, Lithuania. Print on paper, 70cm x 100cm.
Technique: JavaScript, OpenType. (Figure 2)

Frequensea (2015) — exhibition organized in SHOWROOM, Antwerp in
March 2015, in collaboration with Lucas Nijs, Pieter Heremans and
Lieven Menschaert. Print on aluminium, projection, installation, virtual
reality. Technique: Custom software, HackRF. (Figure 3)

Figure 1: "Traveling Letters", Frederik De Bleser, 2012
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Figure 2: "arial.wtf", Frederik De Bleser, 2013

Figure 3: "Frequensea", Frederik De Bleser, 2015
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Introduction1
If you're reading this, you're probably a designer. Or a computer
scientist. Or maybe you would identify as someone who falls between
the two disciplines. We've experienced difficulty ourselves in trying to
articulate to our friends or family what it is we do. Our field of
generative design sits on a precipice between art and science,
connecting the world of ideas with the world of ones and zeroes. This
often results in an exciting academic or professional life, but can be
quite awkward at dinner conversations.

Generative design and data visualization can be found in everything
from mundane applications like personalized direct mailings to
visualizations of our vitals on our smartwatches. They entertain
passers-by of Deutsche Bank in Hong Kong (Figure 4) or visualize taxi
flows in New York City (Figure 5). They can help illustrate complex
issues such as gun control through storytelling (Figure 6) or break out
of the virtual world and become physical objects (Figure 7).

Building these new kinds of applications requires new tools. John
Maeda's Design By Numbers (Maeda, 2001) and Fry and Reas' Processing
(Reas, 2007) elevated generative design tools from niche hacks to apps
used by a broader public of designers. The terminology of "sketches"
helped establish the medium as not just a production tool but an
exploratory environment in its own right. Generative tools eschew the
old metaphors of programs like Photoshop. They do not have a brush,
or pencil or eraser. Instead they expose the fundamental building
blocks of the machine and make them available for creative purposes.
They give control over the logical flow of computer programs and the
mathematical concepts underneath the graphics.

Figure 4: "Deutsche Bank Realtime Visualization", Universal Everything,
2011
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Figure 5: "Taxi, Taxi!", Robert Hodgin, 2016

Figure 6: "U.S. Gun Deaths", Periscopic, 2013
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Figure 7: "Cell Cycle Jewelry", Jessica Rosenkrantz and Jesse
Louis-Rosenberg, 2009
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As part of the Experimental Media Research Group, we've been
researching new approaches to graphic design since 2004. Our aim is to
promote the computer from a production tool to a creative partner that
helps extract, process and present information. We've developed
NodeBox, an open-source tool used for automating graphic design
production tasks. Newer versions have combined a programming
approach with a visual node-based approach. This thesis will evaluate
the different versions of NodeBox, note their respective advantages and
disadvantages, and describe how we mitigated issues.

The tools we use are not a side issue. They are a fundamental part of
the creative process. The Italian design studio TODO, who won the
Silver European Design Award in 2010 for their work Spamghetto, wrote
about NodeBox: "Spamghetto wouldn’t be a reality without their
wonderful software tool for generative graphics." (Olivero, 2010)

All tools sit between the user and the hardware of the machine.
Generative design tools, by their very nature, gravitate closer to the
side of the machine. Their conceptual model might be unfamiliar to
designers, raising the barrier to entry.

Our hypothesis is that a generative design approach is a useful addition
to a designers' toolbox. Its use can accomplish four different goals:
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G1 — Efficiency Generative design tools allow designers to become
more efficient. Designers and artists are faster at completing tasks and
are not arbitrarily restricted by what a tool allows them to do.

G2 — New Aesthetics Generative design tools allow designers to create
results that have not been seen before. Designers and artists create
work that they would otherwise not be able to create.

G3 — Broader Approach A generative design approach allows designers
to try out more things before settling on a solution. Designers and
artists can integrate new and familiar tools to extend their possibilities.

G4 — Self-Reliant Generative design tools are easy-to-use. Designers
and artists can use them without any outside help.

This thesis is structured around three important programming
paradigms. Each paradigm represents a different approach in thinking
about computing.

Chapter 2, Context, will describe the requirements for generative tools
and how we evaluate our approach.

Chapter 3, Imperative Programming, will cover the paradigm that is
closest to the physical nature of the machine. It describes how loops,
conditions and data structures can be used for generative design,
examines NodeBox 1 and evaluates this approach through visual works
and usability studies.

Chapter 4, Functional Programming, introduces visual programming,
and explain how three iterations of NodeBox gradually lower the barrier
to entry based on input from users.

Chapter 5, Constraint Programming, proposes a new tool, Logic
Layout, which obviates the need for any kind of programming, visual or
otherwise, while still retaining important benefits of generative design.
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Context2
The use of digital tools in the arts has a long history. However, it wasn't
until recently, with the creation of tools like Processing and NodeBox,
that these tools become widely available to an audience of
non-technical artists.

In 2004 we started the Experimental Media Research Group (EMRG)
from the graduation project of Dr. Tom De Smedt and Frederik De
Bleser, under the auspices of Lucas Nijs. EMRG is associated with the St
Lucas School of Arts of the Karel de Grote-Hogeschool (Antwerp,
Belgium). Our vision was to make the power of the computer available
to a wide audience of designers and artists. The group develops a
number of software tools and libraries, most notably NodeBox, a tool
for generative graphic design, and Pattern, a library for natural
language parsing and web mining.

Through workshops, teaching design students and professionals and
through online communities we spread word of our tools. But just
getting those tools out there doesn't mean everybody will use them. For
example, our research has shown that 67% of surveilled students have
heard of Processing but only 29% have used it (see Section 4.7.4). 
Clearly, there is a gap between awareness and usage.

The goal of this thesis is to evaluate the impact of tools for generative
design. Specifically, we want to measure if users are more efficient,
create work that is aesthetically new, if they handle a broader approach
and if the tools they use make them self-reliant. We do this by
observing how students and professionals work, we ask them through
questionnaires and in depth interviews, and we perform experiments
using instrumented software (see Section 4.7).

In this section we will give an overview of terms and concepts used in
graphic design, programming, and how we evaluate our approach.

2.1 Generative Design
Generative design is a method whereby we use an algorithm to
generate an image. The design is controlled by a set of rules that
determines its outcome. This basic principle has many different
applications. Here are some examples:
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1. Given a database, design a product catalog using a predefined layout
scheme (see Section 3.5.3.1). Here we use the computer pure as a
production tool. We give it a very strict ruleset and a dataset. In
essence, the computer just automates the boring, repetitive work we
would have to do by hand. This approach is used in direct mailing to
personalize the communication.

2. Describe a procedure to design a logo that includes some
randomness. For example, the ChampdAction logo (see Section 3.5.3.3) 
randomly connects lines between random points in the outline. The
randomness is limited to predefined bounds. This gives the computer
some wiggle room and generates a (possibly infinite) set of variations.

3. Use the computer as an idea generator. For example the Prism
algorithm (De Smedt, 2007) generates a color palette for any given word.
Here we can use the "wisdom of the crowds" to go beyond randomness
and towards a system based on knowledge. The job of the algorithm is
no longer to execute instructions to generate a result that we could
create by hand as well (as tedious as it might be), but to help generate
ideas and surprise us.

4. Allow the computer to operate "autonomously". This is often used
where we know how the solution will look, but not the exact steps to
get there. Approaches here are declarative programming, evolutionary
algorithms or neural networks. The Ottobot algorithm (see Section
3.5.3.2) is an example of this approach.

Throughout this thesis we will look at examples for all these different
applications. We will examine if using tools for these different
applications make designers more efficient (G1), allow them to create a
new aesthetic (G2), let them explore a broader approach before settling
on a solution (G3) and become self-reliant (G4).

2.2 In History
Artists have used the "generative design" model long before the
invention of the computer. Many artists in the Renaissance (like
Raphael, Verrocchio) ran large workshops with assistants executing the
work based on drawings and instructions by the master. Most famously,
Andy Warhol's Factory had several assistants producing different
variations of his silk-screen multiples based on instructions by Warhol.

The appeal of using programming for design and art is simple: it allows
you to leverage the speed of the computer to automate repetitive tasks,
thereby freeing the artist to concentrate on the ideas instead of the
execution. It's like having a large workshop with assistants, all carrying
out your instructions, for a fraction of the cost and time.
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2.3 Data Visualization
In the age of big data there is an opportunity for graphic designers to
apply their design knowledge to the visualization of abstract
information. The job of the designer — converting abstract concepts
into visual representations — maps very well onto the field of data
visualization. However, the field represents a unique challenge since the
subject matter, the data, is usually large and often dynamic (Tufte, 1983).

Work by Bret Victor proposes three choices available to graphic
designers interested in visualization (Victor, 2013). They can use a set of
ready-made visualizations, available in spreadsheet software and online
tools. However, since it's the task of graphic designers to come up with
creative ideas, using "out of the box" solutions is not feasible. They can
draw their visualizations using pencil and paper or software like Adobe
Illustrator. This provides immediate control but connecting each data
point to a visual representation is a manual, error-prone process. Lastly,
they can code their visualization using programming tools. This avoids
the inflexibility of spreadsheets and the static nature of drawing since
new data can be fed into the visualization continuously.

For large data sets, programming a visualization is the only realistic
option. Specific tools for data visualization have been created (most
notably D3 (Bostock, 2011)). We will focus on the use of NodeBox for data
visualization and how the different goals set out in the introduction
apply to different iterations of the software.

2.4 Thinking in Metaphors
From the earliest cave paintings to modern design applications, we have
used tools to express our creativity. In the real world these tools are
pencils, markers, and before the age of desktop publishing, rulers and
glue. In the digital age, these tools have digital analogues. The very
naming of the most known graphic design application — Photoshop —
comes from the physical place that allowed you to develop your photos.
The tools in Photoshop are metaphors for the physical objects they are
replacing: the brush, the eraser, the stamp, the dodge tool (used in the
darkroom to lighten areas of the image) (Galai, 2015).

These metaphors are useful when creating a new tool because they
encourage adoption. They allow users transitioning from the analog
world into the digital world to take their knowledge with them. Ever
used an eraser? Now the eraser is an icon in the toolbar. However we've
long passed the point were those metaphors make sense. Just as the
save icon is represented by a floppy disk, a technology that has been
obsolete for decades, people using Photoshop today have never seen a
physical dodge tool.
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A bigger problem is that those metaphors limit us to think in their
terms. The available tools and metaphors in design applications
establish a language, a way that allows us to express our intent through
tools. And even though that language is malleable in the digital world
(e.g. we never run out of paint to fill the page with), it still fundamentally
limits how we think about solving a design problem. As Wittgenstein
said: "the limits of language are the limits of my world" (Wittgenstein,
1994).

Some design problems like data visualization require a completely
different approach to design. If we want to visualize, say, broadband
penetration in the United States, it is no longer useful to think in terms
of physical metaphors. We've reached the limits of the metaphoric
language we can use.

Pioneers like John Maeda have been promoting a different way of
thinking about computers. Not as a way of carrying over and extending
physical metaphors, but as an opportunity to develop entirely new
metaphors. His software, Design By Numbers, was an important
milestone in producing an application that could be used by
non-programmers to use the computer in entirely new ways (G2).

Of course we still think in metaphors. Only now these metaphors
closely map to the physical reality of the computer. Instead of dealing
with pens and erasers we think with variables, conditions, loops and
objects. Underneath they still get translated to machine code
instructions. We hypothesize that thinking with these new metaphors
can allow designers to be more efficient (G1), more creative (G2), help
broaden their approach (G3) and thus are a valuable addition to a
designers' toolbox.

2.5 Speaking the Same Language
To give instructions to the computer we need to speak its language. We
need to agree on a shared form of communication that both the user
and the computer can understand. This language can be text-based or
visual. And because it is a set of coded instructions that programs the
computer to behave in a predetermined way, we will call it a
programming language.

Just as there is no single human language, there is no single
programming language. They range from low-level (close to the physical
reality of the computer) to high-level (close to the user's conceptual
model), from mainstream (Java) to obscure (Piet). And just as our choice
of metaphors decides the final outcome of the work, so does the choice
of programming language.
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In this PhD we will study three different programming paradigms:
imperative programming, functional programming and constraint
programming. For each we will demonstrate related work and show our
own applications within that space. We will examine how each
paradigm relates to the four goals set out in the introduction.

We recognize that our categorization is overly broad: in reality there is
a lot of overlap and cross-pollination between paradigms. We decided
to use these paradigms as a helpful framework to compare different
approaches to programming.

2.6 Evaluating our Approach
During the PhD we made observations of users using the program (both
in person and using screen casting software), we had them fill out
questionnaires, conducted in depth interviews, performed experiments
and evaluated visual results. To validate our hypothesis we will need to
look at how each of these instruments can be used to validate our four
goals.

Orthogonal to these measurements are the scales we can use to rate the
overall fitness of a system. We integrated the Dreyfus scale, Fred
Brook's distinction between Accidental Complexity and Essential
Complexity, and Soloway's method of plan composition. These scales
will be used to make observations about the system as a whole.

2.6.1 Instruments

The NodeBox workshops were an opportunity to evaluate our tools in
real-world situations. They are intensive one- or two-week workshops
designed to give students an introduction in programming, new media
arts and digital sketching. The results of these workshops were posters,
movies and interactive projects. The model for these workshops was
based on the experimental type design workshops by Lucas Nijs (Nijs,
1998), originally using FontLab and Macromedia Director. The NodeBox
workshops retained the timing and "flow" of these workshops while
using new tools.

We used a number of instruments to gage the impact of generative
design. During workshops we made observations from the students
working with the software: we noted which aspects they were delighted
about, where they struggled, and where they got completely stuck and
needed help. At the end of the workshop we used the System Usability
Scale (Brooke, 1996), an industry standard usability questionnaire that
contains questions like "I thought the system was easy to use", and
scales from "strongly agree" to "strongly disagree". In addition, we
provided a feedback form where users could list advantages and
disadvantages of the software.
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In some workshops we conducted in depth interviews with
participants. These were recordings, ranging from 15-30 mins, talking in
depth about the usability of the software and applicability in their
professional work. In later workshops we also used A/B testing to
compare the efficiency and usability of textual and visual programming
approaches (see Section 4.7).

2.6.2 Four Goals

To validate our hypothesis we will need to look at how each of these
measuring instruments can be used to validate our four goals.

G1 — Efficiency To measure efficiency we recorded screencasts during
certain workshops to see how fast users could complete a given task. To
compare the efficiency of textual and visual programming we set up an
A/B experiment (see Section 4.7).

G2 — New Aesthetics To evaluate whether users could produce new and
surprising results, we looked at the visual results produced at the end of
each workshop. We also looked at feedback forms and in depth
interviews.

G3 — Broader Approach To determine if users were able to explore
more, we observed how students used the software during the
workshop. In addition, our in depth interviews explored how usage of
the software altered their creative process.

G4 — Self-reliance To measure self-reliance we measured the usability
of the software using the System Usability Scale (Brooke, 1996)
questionnaire. In addition, users often indicated usable and less-usable
aspects of the system on feedback forms. We also observed students
during the workshop to see where they would get stuck, and
questioned them about it during in depth interviews.

2.6.3 Accidental Complexity vs Essential Complexity

Fred Brooks, in his book "No Silver Bullet", distinguishes between two
different types of complexity: accidental complexity and essential
complexity (Brooks, 1987).  Essential complexity is caused by the
problem to be solved. It emerges from the requirements of the system:
if the users want the program to do 5 different things, all of these 5
things are essential, and we can't reduce this further. Accidental
complexity relates to problems introduced by the infrastructure
around the problem: syntax, compiler invocations, translation between
the language to machine code,.... 
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The invention of higher-level programming languages made a
significant improvement in the area of accidental complexity. Python
manages the memory for us, reducing the burden to write programs in
it.

Whenever we discuss an approach we will use Brook's framework to
distinguish between accidental and essential complexity. For example in
Section 3.6.3 we will argue that language syntax is accidental
complexity. It has no bearing on the problem to be solved: it is only
there to tell the compiler what machine code to output. Program state
(discussed in Section 3.6.5) is another example of accidental complexity:
the careful management of the current fill and stroke color, the
transformation matrix and the font require significant mental
processing even if they do nothing to solve the fundamental problem.

The benefit of reducing accidental complexity is that users have more
time to focus on the task at hand (G1). In addition, any complexity has
the risk of creating a situation where the user is stuck, reducing their
self-reliance (G4).

We will see that reducing accidental complexity is a balancing act. For
example, replacing textual programming with visual programming will
solve issues with syntax but introduces new complexity related to
closeness of (visual) mapping (Green, 1996). In addition, removing
complexity can also limit expressivity, inadvertently creating a situation
where we can't solve the essential problem anymore.

2.6.4 Plan Composition

Teaching the syntax and semantics of a programming language is not
enough. The real problems novices have with programming (both
textual and visual) is being able to "put the pieces together": to compose
a bigger program out of smaller language constructs (Spohrer, 1986).

To solve a problem, humans employ template-like solutions, or plans. 
In programming, a plan consists of a series of code fragments joined
together to solve the problem. Plans are implemented using language
constructs: simple statements, loops, conditions, and even bigger
groups like classes and modules. Learning to program is mastering the
problem-solving skill of coming up with a plan (Soloway, 1986). 

Using language constructs incorrectly and plan composition are the
two major causes of programming errors for novices (Ebrahimi, 1994). 
We will talk about language constructs and syntax when evaluating
NodeBox 1 (see Section 3.4). We evaluate plan composition by looking at
how a system helps its users with planning. For example, nodes and
dataflow in NodeBox 3 are an effort to make plan composition explicit
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(see Section 4.4.8.4) whereas Logic Layout attempts to work around
plan composition entirely (see Section 5.1).

2.6.5 Dreyfus Model of Skill Acquisition

The Dreyfus model is a model of how students acquire skills. It was
developed in the 1980's by the brothers Stuart and Hubert Dreyfus
(Dreyfus, 1980). 

The model outlines five discrete stages through which students pass on
their way from novice to expert. The model is situational: it applies to a
specific skill, not to the person as a whole. You can be proficient in
programming but a novice in line dancing, for example. The stages are
novice (beginners with little to no experience), advanced beginner (able
to perform simple tasks on their own but have difficulty
troubleshooting), competent (conceptual model of problem domain,
can troubleshoot), proficient (need larger conceptual framework, can
self-correct) and expert (primary source of knowledge in the field).

We use the Dreyfus model to help us rank students when performing
A/B experiments (see Section 4.7.1). When developing the software the
model helps in determining which type of documentation or interface is
needed at which skill level (see for example Section 4.5.4).
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Imperative Programming3
In this chapter we will describe imperative programming, which is the
dominant programming paradigm for generative design and
programming in general. We will show how generative design works
through a tutorial, describe NodeBox 1 and show visual results by
students, commercial projects and our own work. Finally we will
evaluate this approach and describe its advantages and drawbacks.

3.1 Introduction
Imperative, or procedural programming, is the dominant programming
paradigm. It uses statements (actions) that describe each step the
computer has to perform. The computer will execute a series of
commands (assignments, loops, conditions and calls), thereby changing
the internal state or drawing something on the screen.
General-purpose programming languages like C/C++, Java, or
JavaScript are all imperative programming languages.

Imperative programming focuses on the how: how the program should
get to the final result, specified step by step. It is comparable to a
cooking recipe: a list of instructions that should be followed in order to
reach the end result.

3.2 Background / Related Work
In this section we want to show a number of imperative programming
languages and tools that inspired the development of NodeBox. We
selected projects that were important from a historical perspective,
that have been used to create influential generative work, or that have
an important educational purpose.

3.2.1 Logo

Logo is a programming language designed for education, created by
Wally Feurzeig and Seymour Papert. It is well known for its "turtle
graphics" in which line graphics were produced by an on-screen cursor
or a small robot called a "turtle". Students were encouraged to reason
about the turtle's motion by imagining what they would do if they were
the turtle.
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The turtle moves with commands relative to its own position, e.g.
RIGHT 45 will spin the turtle to the right 45 degrees.

First we define a routine to draw a square:

TO square
REPEAT 4 [FORWARD 30 LEFT 90]
END

Then we draw this square multiple times, each time rotating a bit:

FORWARD 100
REPEAT 36 [LEFT 10 square]

The educational aspect of Logo, specifically the vision of Papert as
described in his book Mindstorms (Papert, 1980), played an important
role in the development of NodeBox.

3.2.2 PostScript

PostScript is a computer language for creating vector graphics. It was
created by John Warnock, Charles Geschke, Doug Brotz, Ed Taft and Bill
Paxton in 1982 (Press, 1985). It was developed in tandem with the first
laser printer as a standard for describing the contents of a page.

PostScript is a complete programming language of its own. It contains
instructions for specifying geometry in terms of straight lines and
Bézier curves. Letter shapes (glyphs) are described as a combination of
lines and curves as well, which can then be rendered at any resolution.

An interesting application of generative design through PostScript is
Beowolf, a digital typeface designed in 1989 by Just van Rossum and Erik
van Blokland from LettError (van Blokland, 1991) (see Figure 8). This
typeface exploited the fact that PostScript was a full programming
language by including random instructions in the description of the
glyph shapes. Each time the printer would output a glyph as part of a
word, it would create a different variation of the letter. Color laser
printers would even output four different variations of each letter, for
each of the CMYK (Cyan / Magenta / Yellow / Black) color layers in the
printer.
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Figure 8: Beowolf by Just van Rossum and Erik van Blokland

PostScript, and its concepts of a state machine, was instrumental in
designing the command API for NodeBox 1.

3.2.3 Design By Numbers

Design By Numbers was a software application created by John Maeda
at the MIT Media Lab, first released in 1999 (Maeda, 2001). It was aimed
at allowing designers, artists and other non-programmers to easily start
computer programming.

The programming environment is kept deliberately simple. It contains a
100 by 100 canvas that only supports black, white and shades of gray. By
removing all non-essential complexity, it boiled generative design down
to a minimum viable product: a setting that allowed room for
experimentation within the bounds of the medium. The book Design By
Numbers demonstrates the broad range of possibilities, even within
these limits.

Design By Numbers was purposely created as an introductory tool into
generative design, but its approach is universally applicable and incited
a whole range of new generative design tools. Most famous is
Processing, created by two of John Maeda's alumni, Casey Reas and Ben
Fry.
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Both the book and software for Design By Numbers showed that by fully
embracing the metaphors of the machine, a new kind of aesthetic was
possible (G2).

3.2.4 Processing

Processing is a computer language and integrated development
environment (IDE) that builds on the work of Design By Numbers to
create an environment fruitful for new media arts, visual design and
data visualization (Reas, 2007).

Processing was designed as a tool to get non-programmers started with
programming with as little overhead as possible. Processing documents
are called "sketches", emphasizing the processing of using the computer
as a digital sketchpad. Clicking the "Run" button executes the sketchs
and shows the visual output. Processing is build on the Java language,
but uses a simplified syntax and an easy API for graphics programming,
inspired by PostScript and OpenGL.

Here's a simple visual program in Processing:

void setup() {
    size(400, 400);
    stroke(255);
    background(192, 64, 0);
}

void draw() {
    line(200, 200, mouseX, mouseY);
}

This program draws a line from a point in the middle in the screen to
the position of the mouse. Because the draw method is called
repeatedly, and previous results aren't automatically erased, this results
in an ad-hoc drawing program for radial shapes.

Additional projects were spun off from Processing, most notably
Arduino, an open-source electronic prototyping platform and p5.js,
which ports Processing to the web. The popularity of Processing made
graphic designers aware of both the existence and importance of
generative design.
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3.3 Tutorial
Before we discuss our contributions we want to give a short
introduction into using imperative generative software. This tutorial
will use NodeBox but the concepts explained here also apply to other
imperative programming languages like Processing or p5.js.
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NodeBox has a set of built-in commands that render elements to the
screen. For example, you can draw a simple rectangle using the rect
command:

rect(10, 20, 30, 40)

The numbers in this command specify a position, going from
left-to-right and top-to-bottom:

# This rectangle will appear to the left.
rect(10, 30, 30, 30)

# This rectangle will appear to the right.
# Note that the value of the first parameter is larger.
rect(60, 30, 30, 30)

NodeBox remembers the current "fill" and "stroke" style. Think of the fill
and stroke operations as grabbing a crayon: every shape you draw
afterwards will be drawn with that crayon.

# The colors are specified as R/G/B values
# in a range between 0.0 and 1.0.
fill(0, 0, 1)
rect(10, 20, 30, 40)

stroke(1, 0, 0)
strokewidth(4)
rect(15, 25, 30, 40)

You can turn off the fill color using the "nofill" or "nostroke" commands:

fill(0.5, 0, 0)
stroke(0)
rect(10, 20, 30, 40)
# Turn off the fill
nofill()
rect(15, 25, 30, 40)

NodeBox uses a "painters model" of rendering (See (Ferraiolo, 2000)). 
Each successive operation "paints over" earlier operations. In other
words, items that appear first in the program are layered in the back. To
move items to the front, re-order them so they appear at the end of the
program.
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fill("blue")
rect(10, 20, 30, 40)

fill("red")
rect(20, 30, 30, 40)

fill("green")
rect(30, 40, 30, 40)

To draw text, use the text command. The vertical position of the text
specifies the baseline. Just as with colors, the font and fontsize can
be specified beforehand and will be remembered for all subsequent
commands.

baseline = 50
fontsize(24)
text("Hello", 10, baseline)
stroke(0)
line(0, baseline, 100, baseline)

Hello

The power of NodeBox comes from repeating a set of instructions using
loops. We use the for loop to instruct NodeBox to place multiple lines
on the page, even though we only have a single line command:

stroke(0)
strokewidth(0.1)
for i in range(0, 100, 2):
    line(0, 0, i, 100)

To create variation we utilize the random function. This instructs
NodeBox to create a different result every time it runs through the
loop.

for x, y in grid(20, 20, 5, 5):
    fill(1, random(), random())
    rect(x, y, 5, 5)

Random values can take the place of any other value in the system,
resulting in complex compositions.
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from math import sin, cos
grid_size = 10
v = random()
c = random()
for x, y in grid(10, 10, grid_size, grid_size):
    fill(sin(v + y * x / 100.0), cos(c), cos(c), random())
    s = random(grid_size)
    oval(x, y, s, s)
    fill(cos(v + y * x / 100.0), cos(c), cos(c), random())
    dx = random(-5, 5)
    dy = random(-5, 5)
    ds = random(-20, 20)
    oval(x + dx, y + dy,ds, ds)
    c += 0.01

We don't have to be content with the built-in functions of the language.
Instead, we can expand the language by creating abstractions. 
These allow us to build new language elements out of existing ones.

Here we create a "tree" primitive out of simple lines, which we use to
create a forest.

background(0, 0.2, 0)

def tree(x, y):
    beginpath()
    moveto(x,    y)
    lineto(x-2,  y)
    lineto(x-2,  y-10)
    lineto(x-10, y-10)
    lineto(x-5,  y-20)
    lineto(x-10, y-20)
    lineto(x,    y-35)
    lineto(x+10, y-20)
    lineto(x+5,  y-20)
    lineto(x+10, y-10)
    lineto(x+2,  y-10)
    lineto(x+2,  y)
    endpath()

nofill()
for y in range(0, 120, 3):
    fill(0, random(-0.2, 0.2) + y/120.0, 0)
    tree(random(100), y)

The textpath command turns text into Bézier paths. This allows us to
use text as a template shape, for example by using the contains
function to see if a point falls within its bounds. In combination with
our distance function we can re-create the "spider web" technique used
in the ChampdAction logo (see Section 3.5.3.3).
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def distance_squared(pt1, pt2):
    return abs(pt1.x-pt2.x) + abs(pt1.y-pt2.y)

fontsize(100)
p = textpath("S", 10, 90)

stroke(0)
for i in range(50000):
    pt1 = Point(random(100), random(100))
    pt2 = Point(random(100), random(100))
    if p.contains(pt1) and \
       p.contains(pt2) and \
       distance_squared(pt1, pt2) < 25:
        line(pt1, pt2)
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3.4 NodeBox 1
During our studies in graphic design we were frequently presented with
assignments that could benefit from a generative approach. This
included repetitive work, work that would be displayed online, or
interactive installations. Often we would create ad hoc solutions:
custom software that was designed solely for the purpose of
completing the assignment. Our approach drew the attention of fellow
students who were interested in making similar work. Unfortunately
the technical capabilities needed to create such solutions were out of
their reach.

In 2002 Just van Rossum of LettError developed an application called
DrawBot (van Rossum, 2002). This application used a similar visual
interface than Processing but used the Python programming language
instead of Java. The application ran on OS X and used the Quartz and
Cocoa APIs for drawing. We saw the benefits of this integrated
environment that coupled an easy-to-use programming language with a
visual canvas that showed the output of your code. During my
internship at LettError I worked with Just on the development of the
application.

In 2004 we forked NodeBox from DrawBot. NodeBox introduced a
number of breaking changes to the API, bringing it more in line with the
syntax of PostScript. We replaced object-oriented wrappers around
Cocoa objects (like NSColor) with simple functions (like fill()) 
that change the state of the underlying drawing context.

The aim of NodeBox 1 was to be a single environment for graphics
programming. It includes features for working with vectors, images,
adding animation and interactivity. The application produces images in
high quality PDF format. The basic vocabulary of NodeBox 1 consists of
less than 100 commands, which can be extended through libraries.
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3.4.1 Python

NodeBox (and DrawBot) uses the Python programming language, both
for our users and internally. Python is a high-level, dynamic language
focused on readability and terseness. Using a high-level language
means that we can reduce the amount of accidental complexity, since
we don't need to worry about concepts like memory management. In
addition Python has a number of other nice properties, such as
significant whitespace, which means that students programs are easier
to read and easier to debug for themselves as well as their teachers (G1,
G4).

3.4.2 Command Language

On top of the built-in Python keywords NodeBox provides a set of
graphics primitives. These are commands that draw shapes to the
screen.

The commands provide a wrapper around Mac OS X's API, called Cocoa.
This API is accessible from Python but requires significant effort to use.
For example, here's how to draw a circle using Cocoa and PyObjC:

from AppKit import *
clr = NSColor.colorWithDeviceRed_green_blue_alpha_(1.0, 0.0, 0.0, 1.0)
clr.set()
path = NSBezierPath.bezierPath()
path.appendBezierPathWithOvalInRect_( ((10, 20), (50, 50)) )
path.fill()

For comparison, here is the same using NodeBox's drawing API:

fill(1.0, 0.0, 0.0, 1.0)
oval(10, 20, 50, 50)

Our goal in designing the API is to reduce accidental complexity by
being as direct as possible and reduce surprise, while still being
powerful. For example: the rect() command draws a rectangle, but
also returns a Bézier path that can be further manipulated. The API
consists of less than 100 keywords.

3.4.3 Vector Graphics

There are two conceptual modes in which you can use NodeBox. You
can use NodeBox as a simple direct drawing machine, in which every
command immediately produces output on screen. In addition, every
drawing command also returns the Bézier curves so you can further
manipulate it.
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Manipulation of the paths happens using the "bezier" library, written by
Dr. Tom De Smedt and Prof. Dr. Florimond De Smedt. This library can
calculate arbitrary points on a Bézier curve, providing users with
fine-grained control over paths. Our users rely on this feature during
experimental type design workshops to produce dynamic type faces
(G2) (see Figure 9).

Figure 9: An example of Bézier manipulation. For each contour we
calculate the surface normals, then randomly extend these to create wavy
outlines.

3.4.4 State Machine

NodeBox keeps a set of drawing state around to figure out how to draw
shapes or text. It has a notion of the "current" color, font,
transformation, text alignment and so on. Drawing commands will take
this state into account when placing their elements on the screen.

Each of these state variables has a sensible default state, such as a black
fill color, a default font size of 24, etc. push() and pop() operations
allow you to save and restore the current state.

3.4.5 Transformations

NodeBox uses the traditional concept of a current graphics
transformation, represented as an affine transformation. This allows for
the current canvas to be translated, rotated or scaled. Affine
transformations operate around the origin of a Cartesian coordinate
system (the top-left corner in NodeBox) which is often an unnatural
way to think about transformations.

We introduced the concept of "center" transformations where the
origin lies in the center of a given shape. This makes rotating and
scaling shapes easier (G4). While this technique is useful, it becomes
more difficult to transform groups of elements because each element
will rotate around its own center. To solve this we could introduce
grouping but this introduces additional complexity. For these use cases
we generally advice to use traditional (what we call "corner-mode")
transformations.
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3.4.6 Randomness

Computers are created to execute the instructions exactly as you
specify them. This predictability is a desirable property of an automated
system. For artists and designers, unexpected results emerging from
randomness and chance can stimulate creativity (Freeman, 1997) (see
also Section 5.2.3). That is why we added the option to add randomness
to generative designs. This randomness gives the computer some
"creative liberty" to generate designs within the given bounded scope
(see Figure 10). 

Figure 10: A number of variations of the same script
(http://bit.ly/1qUhyQi)

NodeBox uses Python's random module, which implements a pseudo
random number generator. This algorithm produces an approximation
of true random numbers. More importantly, we are able to seed the
algorithm with a given value so that it always produces the same series
of random numbers. This seed is controlled in NodeBox when tweaking
a value using the throttle (described below).

3.4.7 Repetition

Another crucial aspect of generative design is that of the loop. If
computers could only do what we instructed, once, there wouldn't be
much need for them: we'd rather do the task by hand, faster and easier.
However, once we can tell the machine to repeat a set of instructions,
the speed of the machine proves beneficial.

NodeBox uses standard Python loop constructs such as for and while
to repeat a block of statements. In addition we created a spatial
construct called grid which is a two-dimensional loop that loops over
a grid of X/Y positions. Each value in the loop returns a certain
coordinate of this grid.
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3.4.8 Tweaking

The typical workflow when developing NodeBox scripts is to make a
change to the code, then to press a keyboard shortcut to run the code
and view the results. This is a nuisance when using code for creative
purposes where it often takes a number of tries to find the "right"
number for a given parameter (where "right" depends on the artists'
subjective, aesthetic feel).

We added the ability to tweak any value in the code without needing to
manually re-run the code. This allowed users to interactively
manipulate the values for colors, sizes, loop ranges and positions and
immediately get visual feedback of their changes. A visual indicator,
called the "throttle" shows the new value of the number (see Figure 11).

Figure 11: The NodeBox 1 throttle, here manipulating the position of the
stars.

Value tweaking made it efficient for users to explore the solution space
(G1). This allowed them to try more experiments before settling on a
solution (G3).

3.4.9 Print

NodeBox is built on top of the Quartz rendering layer of OS X. This
allows us to export to PDF while retaining all vector information and
text outlines for further modification in traditional design applications
such as Adobe Illustrator (see Figure 12). This sets it apart from
Processing, which is more focused on fast screen output. Due to the
way Processing handles curves, they are exported in PDF as small
straight lines, resulting in quality loss.



3.4.9 Print

45

Figure 12: NodeBox project exported as PDF and opened in Illustrator.
Note that all text remains modifiable.

We added support for calibrated colors, native CMYK color support,
and real-world units such as centimeters and inches.

3.4.10 Libraries

The core of NodeBox adds a small number of built-in commands to the
Python runtime. These commands can be extended through the use of
libraries. Python has good support for working with external modules.
We extended Python's import facilities to give NodeBox libraries direct
access to the internal state of the application through a command
called ximport.

The NodeBox community built a large number of libraries. We'd like to
acknowledge the work of Dr. Tom De Smedt who developed a large
number of libraries for language parsing, pixel manipulation, emergent
systems and color processing. Some of these libraries form the basis of
the Python Pattern library (De Smedt, 2012).

Libraries provide users with well-tested code in areas that are outside
of the scope of the original program. The Core Image library, for
example, allows users to create real-time image manipulation using a
simple API. This has been used to create the "Evolution" project (Figure
13).
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Figure 13: "Evolution", Ludivine Lechat, Tom De Smedt and Frederik De
Bleser, 2007



3.4.11 Data Visualization

47

3.4.11 Data Visualization

Simple examples in NodeBox start out with loops around predefined
variables, e.g. repeat this block 25 times. These projects can look very
compelling while still being based on purely aesthetic preferences.
Often however, we want to build projects around external data. This
data can come from databases (e.g. to make a product catalog), web
pages (e.g. through parsing), images (e.g. to calculate color distribution)
or even sound or other external interfaces.

An example of data visualization using external data was a project by
Hannu Aarniala created in 2009 that used Google Translate to
repeatedly translate a sentence from English, over to Japanese, Dutch,
French, Arabic and so forth before translating back to English. This
transformed the text, often distorted its original meaning. For example
the sentence "The best a man can get" (the slogan for Gillette) was
transformed into "The man, best available" (see Figure 14). In this project
lists were used to represent the sequence of languages to translate.
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Figure 14: "The Man, Best Available", Hannu Aarniala, 2009
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3.5 Visual Results
To show the validity of this approach we show a selection of works
created by students during workshops, commercial work and our own
work.

3.5.1 Workshops

Here we show the results of work produced with NodeBox 1 during
workshops. Students were introduced in the software and the basics of
programming, and received guidance and tutoring. Results were
presented at the end of the week.

Evil Font

This project was created in the 2007 Lahti workshop by Valtteri
Vitakoski. The concept was to created a parametric font that had an
"evilness" slider. Dragging the slider would make the font look more
"evil" (Figure 15).

Figure 15: "Evil Font", Valtteri Vitakoski, 2007
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The script itself is less than 100 lines of NodeBox 1 code. It draws a
piece of text, then randomly places image elements out of a predefined
folder structure onto the type. The amount of evilness defines how
many images are placed.

This project shows the benefits of a hybrid generative approach. We call
this a hybrid approach because not everything is generated by a code.
The code chooses from a library with predefines shapes and images. By
extending the library with more images, we can create more variation in
the output. The programmatic approach helps to place the images at
the correct locations, a procedure that would be tiresome to do by hand
for multiple pieces of text.

Comic Sans Meme

The project designed a typeface that would change appearance based
on the content of the text. Specifically, it would replace typical
"business-like" words (like "paradigm" or "innovative") with Comic Sans
(Figure 16). It was created during the 2007 Lahti workshop by Per-Oskar
Grönroos.

Figure 16: "Comic Sans Meme", Per-Oskar Grönroos, 2007

To create a working font, Per-Oskar "abused" the glyph substitution
features of OpenType. This feature is often used to replace multiple
letters with a ligature (a combined letter shape). NodeBox 1 helped to
generate the hundreds of ligatures rules needed to replace words such
as "paradigm" with their Comic Sans letter shapes (a task that would be
unfeasible to do by hand).

Organic Dots

This project was created by Veronika Schmidt during the 2008
workshop at Aalto University, Helsinki. The concept was to visualize a
form of modern ornamentation taken to the extreme. For that Veronika
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combined organic forms in endless multiplications. This method
required a digital method to combine manually created elements into a
finished poster.

Veronika combined a number of elements such as leaves and dots using
NodeBox into more complex shapes. These shapes were combined in
Adobe Illustrator to produce the finished result (Figures 17 and 18).

Figure 17: "Organic Dots", Veronika Schmidt, 2008

Figure 18: The individual elements that were combined to produce the
final work
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Oscillating Lettershapes

The goal of the "Oscillating Lettershapes" project was to define a fully
generative typeface (Figure 19).
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Figure 19: "Oscillating Lettershapes", Jonatan Hildén, 2008

For this Jonatan Hildén defined each letter as a set of programmatic
instructions. For example here are the instructions for the letter "M":

beginpath(a1x+N1/2,a1y)
lineto(b1x+N2, b1y+N2)
lineto(cx, cy+N2*3)
lineto(b2x-N2, b2y+N2)
lineto(a2x-N1/2, a2y)

Since the shape was defined programmatically it could be modified at
will. Jonathan designed a number of filters (like rotate,  sine and
even anger) that would modify the shape with a certain factor.

This project demonstrates a fully data-driven approach, where the line
between what is data and what is code (like the shapes of the letters) is
blurred.

3.5.2 Commercial work

NodeBox has been used successfully in a number of commercial
projects. Here we list some projects created by agencies or individuals
outside of the research group.

Spamghetto

Spamghetto (Olivero, 2010) was created by the TODO creative agency
located in Turin, Italy.  The project was a reaction on the flood of spam
emails filling our inboxes. Instead of seeing spam as something to be
deleted and removed, the designers harvested all the spam to create a
generative wallpaper using NodeBox (Figure 20).
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Spamghetto was designed by Giorgio Olivero, Fabio Cionini, Fabio
Franchino, Andrea Clemente, Andrea Pinchi, Riccardo Mongelluzzo,
Elena Fonti and Carlo Syed. In 2011 Spamghetto received the Silver
award in European Design.

Figure 20: "Spamghetto", TODO, 2010

Lunar Calendar

Produced by Dimitre Lima, the Lunar Calendar is an ongoing
visualization showing the phases of the moon during a year. The project
was awarded Bronze in the Data Visualization "Information is Beautiful"
Awards in 2012 (Figure 21).

Figure 21: "Lunar Calendar", Dimitre Lima, 2011

The project is ongoing: the artist is still creating new calendars every
year. Once the algorithm is done, it doesn't take much effort to
generate a poster for a new year.
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JVP Brand Identity

JVP is a Israeli venture capital firm. Design agency Designit were asked
to re-think the brand identity but retain the existing logo mark.
Designer Guy Haviv used NodeBox to create a series of generative
graphics that used the original logo as a base, producing generative
shapes along the curves of the logo (Figure 22).

Figure 22: "JVP Brand Identity", Guy Haviv, 2010

3.5.3 Own Work

As described in the introduction, NodeBox 1 was created as a solution
for design issues we had, both in school and commercially. We used
NodeBox 1 ourselves on a couple of commercial and personal projects.

Trunk and Co

In 2009 we designed and produced the catalog for Samsonite's youth
brand, called Trunk & Co. The brief was to create a catalog of all
available products in 5 different languages.

We stored all the data for the catalog in a XML file. This file contained
the different products and included the translations for all the text. We
used NodeBox to generate PDF files for all of the different languages
(Figure 23).

Figure 23: "Trunk and Co Catalog", Frederik De Bleser and Tom De Smedt,
2009
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By using NodeBox we could automate the repetitive work of creating
multiple versions of the catalog (G1). In addition, because the output of
the software did not require manual post-processing, we could keep
tweaking the design until the last minute, enabling us to try out more
design variations (G3).

Ottobot

Ottobot is a program that creates NodeBox programs. It was initially
constructed in 2009 as a grammar file for the Kant Generator Pro, a
program written by Mark Pilgrim as part of his "Dive Into Python" book
(Pilgrim, 2000) that generates text that superficially resembled the
philosophical work of Immanuel Kant.

Kant Generator Pro takes its input from a grammar file that contains
multiple phrase sets. Each phrase in the phrase set contains references
to other phrase sets. By randomly choosing a phrase from each phrase
set, recursively, the system can generate entire sentences, paragraphs
or pages.

While experimenting with this software we realized it could generate
any kind of language, as long as it followed a strict grammar. Therefore,
the computer language we used for NodeBox could also be captured in
a grammar file. In other words, we could describe the syntax of
NodeBox programs and have the system generate a syntactically valid
program that we could then execute by NodeBox. Figure 24 shows some
typical output of the algorithm.

Figure 24: Typical output of the Ottobot algorithm

Sporadically the algorithm generated output that surprised even us,
creating results that were completely unique (see Figure 25).

Because Ottobot generates executable NodeBox programs it can
generate programs that itself contain randomness (through NodeBox's
random function). This extra step of indirection means that one
program generated by Ottobot can produce many different variations.
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Figure 25: "Ottobot", Frederik De Bleser, 2009

ChampdAction Logo

We designed the logo for ChampdAction, an experimental music
ensemble. The logo represented the ever changing nature of the
ensemble and their often eccentric approach.

The logo picks random points within the contours of an existing
typeface. If these fall within a certain distance of each other, they are
connected; otherwise they are discarded. By manipulating the
maximum connection distance we can manipulate the readability of the
logotype (see Figure 26).

We installed about 40 versions of the logo on the ChampdAction
website, with different gradations of "wildness". When users clicked
around on the site, gradually more and more distorted versions of the
logo were displayed. The logo and website were developed during a one
week intensive workshop were a team of designers created the
brochure as well.
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Figure 26: "ChampdAction Logo", Frederik De Bleser, 2007

Word Maze

Word Maze was a project designed around the theme of concealment
and discovery. It consists of three movies each containing a word that is
initially invisible and becoming more and more clear, although never at
once. The words are generated using a pixelated font generator that is
combined with a modified recursive backtracking algorithm to produce
a maze that is gradually built up and torn down (Figure 27).

Figure 27: "Word Maze", Frederik De Bleser, 2011

Word Maze was exhibited at the "Travelling Letters" exhibition in 2011 in
Vilnius, Lithuania.
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3.6 Evaluation
To evaluate our hypothesis and find out if users are more efficient,
more exploratory, more creative and self-reliant, we will look at
observations made during workshops held with graphic design students
from 2004 until 2009.

3.6.1 Workshop Format

We prefer to teach NodeBox 1 to new students during a one- or
two-week workshop. During this time they learn to use the software to
create a poster or interactive prototype.

We found a one- or two-week workshop to be the best way to teach
new generative software. This concentrated period isolates students
from distractions and being together with other enthusiastic students
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allows them to accomplish things that would otherwise take months
(Nijs, 2007). We have occasionally given the course over a semester, but
this requires a lot of repetition at the beginning of each lecture as
students tend to forget what they learned in the previous weeks.

To encourage interaction and feedback we plan daily presentations in
the evening so students can show their work in progress, see what
others have created and provide feedback to each other. We suggest
students work in small groups, which we found improves overall results.
We speculate this happens because they can bounce ideas off each
other and help each other when they get stuck (instead of waiting for
the teacher).

The intensity of the workshop has limitations as well (Sork, 1984). 
Because we need to present a lot of material in a short time period, it is
difficult to take corrective action when a learner falls behind. We
mitigate this issue by trying to have multiple teachers for each
workshop so that one can teach while the other helps students that
have momentarily fallen behind. The deluge of new material can result
in fatigue or information overload. We've learned from experience to
detect this general mood and stop introducing new material. There is
only so much you can teach during a workshop so we focus on the
aspects of the software that are necessary to complete the assignment.

We've organized NodeBox workshops since 2004 in Belgium, Finland,
Lithuania, Poland, Italy, Canada and France.

3.6.2 Setting Expectations

A challenge with the workshop format was setting expectations for the
students. Since the tools are completely new for them, they can't judge
what they will be able to make for themselves in the allotted time. This
reduces their capability of "dreaming big".

One key insight is that we now do all the teaching up-front, often in the
first two days, instead of teaching in the mornings and letting the
students work in the afternoon, which is what we did before. This way,
students have a good understanding of what is possible using the tool,
and can set their expectations accordingly.

An unexpected side effect of this is that students would often come up
with ideas that closely mimicked the examples shown in the
introduction.When questioned about this, students were often unaware
that they did this, citing that one particular example looked cool or is
what they wanted to do. We found that this behavior mimics stage two
of the Dreyfus model (Dreyfus, 1980): students have just encountered
the software and are asked to follow a new set of rules exactly
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(otherwise the program punishes them with syntax errors). They do not
yet have a holistic view of the software and thus will tend to think
within the bounds of what they have just learned.

We mitigate this issue by also showing work made in previous
workshops. Often this work will be based on similar initial ideas and will
create the impression that "their" idea has already been done. While
this can feel temporarily discouraging it forces students to go beyond
their very first ideas, think beyond the capabilities of the software and
focus on a specific project they want to execute.

3.6.3 Language Syntax

Students struggle a lot with the level of preciseness that the language
expects from them. This is often clear in simple mistakes such as
forgetting to close a brace. This is a minor issue for trained
programmers, but a cause of major frustration for designers. It can
cause them to be stuck for several minutes or even give up entirely.

As an example, a frequently occurring bug in Python is forgetting the
ending column after a for statement:

for i in range(10) # Note the missing ":" here
    print i
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Syntax is an example of accidental complexity. It bears no relation to the
problem that needs to be solved, but is merely a way of expressing the
steps the computer has to take to solve the problem. In other words,
programming code is not an intuitive interface for artists. Instead,
artists should be able to enter into a conversation with the computer
through natural language, much like a chat session (Winograd, 1971).

To solve this issue we initiated the Gravital project in 2007. Its aim was
to create a solver that could take in a graphic design problem in natural
language, convert it to an intermediate representation that could be
edited, and output a visual result. This research project ran for two
years and resulted in the development of a number of natural-language
processing modules and a visual-node based version of NodeBox,
described in the next chapter. This work also resulted in a
peer-reviewed publication that was included in the book "The Agile
Mind" (De Smedt, 2013).

3.6.4 Error messages

Whenever the program encounters an error developers rely on error
messages to help debug the issue. We found that the design of error
messages is a crucial step in helping students with their issue. This
finding corroborates available research (Brown, 1983).
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One major issue is that users often ignore errors (Bargas-Avila, 2007). 
In workshop environments, we observed that when an error shows up,
students will search for the quickest way to get rid of the error without
reading it. We speculate this comes from years of conditioning that
errors in applications relate to issues outside the users' control, and the
best solution is to try again later. This is in line with Dreyfus's finding
that novices just want to accomplish an immediate goal, ignoring
everything that doesn't lead to task completion.

To mitigate this effect we deliberately introduced errors in our
programs when training the students. We showed them how to read the
errors by looking for the line number. By examining the code on that
line (and sometimes some of the surrounding lines), they could often
find simple syntax errors themselves.

Python errors often contain a stack trace, a listing of the execution
frames. We found this output not very useful in NodeBox. The programs
themselves were not very long and often contained only a single level of
nesting. In addition, the stack trace contained information about the
execution of NodeBox itself which made the errors unnecessary
convoluted.

We argue that error messages, taken directly from a computer
programming language like Python, are unusable for beginners and
students. We suggest that programming environments for designers
should wrap the errors in a more usable format, focussing on the line
number and a more readable error explanation. The Processing 3
environment (described in Section 3.2.4) is a good example of error
handling: it underlines the erroneous lines in red and simplifies error
messages to a single human-readable sentence (see Figure 28). 
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Figure 28: Example of Processing 3 error message.

In conclusion, errors are a necessary evil in programming. To
demonstrate this, one student created a project during a workshop
where she created a book of over 700 pages showing all the error
messages she encountered during the making of the book itself (Figure
29).

Figure 29: "NodeBox Errors", Elina, 2004

3.6.5 Invisible state / Statement ordering

NodeBox 1 is designed as a state machine. Internally it contains
information about the current fill and stroke color, the current
transform, the current font name and size, and more. All of theses state
variables will impact drawing operations. When drawing a rectangle
NodeBox will use the current fill and stroke information to color the
object, as well as the current transformation matrix to place the object.
This approach mirrors similar drawing APIs such as PostScript, OpenGL
or Processing.
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Although the state plays a crucial role in the operation of NodeBox, it is
not visualized throughout the program. There is no way to know what
color will be used to fill a rectangle apart from running the program.
With each drawing command, the user has to make the mental exercise
of figuring out all of this state to predict the effect of their drawing
operation. This implies that, to debug programs, users will need to
replay state transitions in their head. Being able to visualize the state of
the program in your head appears to be a core competency of skilled
programmers (Graham, 2007). The better you are in reasoning about the
current state of the program, the faster you can detect bugs.

For novice programmers this often caused confusion when re-ordering
code to change the visual ordering of elements on the screen. Because
the drawing operations themselves depend on the state, re-ordering
the code would often break the drawing code.

Here's a simple example:

# Draw a red rectangle
fill("red")
rect(10, 10, 50, 50)

# Draw a blue ellipse
fill("blue")
oval(30, 30, 50, 50)

In this example, because the oval statement appears after the rectangle,
the oval is drawn on top of the rectangle. If we want the oval to appear
below, we would need to place the statement before. However, if we
forget to also move the associated fill statement, the oval would be
displayed in black (the default starting color):

oval(30, 30, 50, 50)

fill("red")
rect(10, 10, 50, 50)

fill("blue") # Has no effect

Note that the final fill statement sets the color, but nothing gets drawn
afterwards.

Although the issue is quite clear in this simple example, the problem
was exacerbated when using functions. Functions that would draw
shapes would need to set the internal state, affecting later operations.
This meant that most functions weren't "pure", i.e. they had side effects.
This problem permeates all environments that depend on global state
(Victor, 2012). 
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This is another example of accidental complexity. The fact that state
changes need to be carefully coordinated together with drawing
statements has no effect on the problem to be solved. We will see in
Section 4.1.1 that functional programming can help with getting rid of
this complexity.
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3.7 Lessons Learned

3.7.1 Function casing

In programming, the space character has special meaning. It is used to
separate multiple statements. This means the space can't be used to
separate multi-word function names, ie. we can't write "image size" as a
function.

The reason we want to separate out the words is to avoid multiple
interpretations of a name. There are a two common solutions to solving
this issue: we can use a different character to represent the space, such
as an underscore (e.g. image_size) or we can "camel-case" the word,
which means we use upper-case letters in the middle of the name to
denote a word break (e.g. imageSize). Both systems are used
pervasively in programming. In fact, Python uses both schemes, due to
legacy reasons, in different parts of their built-in API.

Although research found camel-cased identifiers to be more readable
(Binkley, 2009) we've opted to use a third scheme, which is not to make
a word distinction at all. (e.g. the "image size" command is written as
imagesize) Because our list of keywords is small and we can easily
choose a different combination if there is a potential for confusion, we
found that multi-word separators introduce an unnecessary extra level
of complexity.

3.7.2 Variable shadowing

The API of NodeBox is intentionally simple. One way we developed this
is "a rect is just a rect". In other words, if you want to draw a rectangle,
the code to write this should look like this:

rect(10, 20, 30, 40)

Because the functions are not name-spaced (e.g. we don't use
nodebox.rect or nbRect), our API effectively introduces new
keywords for the Python language. This set of keywords has expanded
over time; right now there are about 50 functions that NodeBox
predefines. Those keywords, just as any other keywords in the
language, can cause issues with variable names. Because Python doesn't
enforce typing, this can cause bugs.
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We occasionally encountered scripts that used the identifier size as a
variable name, despite size being a NodeBox command.This caused
scripts to fail with often cryptic errors (e.g.
'int' object is not callable).

Although we can't change this behavior without fundamentally
changing the way Python works, we mitigated this issue by using syntax
coloring to distinguish built-in commands from custom identifiers. In
other words, if a word is blue, it is a command and shouldn't be used as
a variable name.

3.7.3 Transformations

To express rotation, translation and scale, NodeBox uses affine
transformations, represented as a 3 by 3 matrix. Users don't have to
know the underlying representation of the affine transformation, but
they have to be aware of the ordering of the transformations. E.g. a
translate operation followed by a rotate operation doesn't have the
same effect as a rotate operation followed by a translate operation.

To illustrate, here we first do the translate, then the rotate:

translate(50, 50)
rotate(45)
rect(-20, -20, 40, 40)

Here we switch the rotate and translate operations:

rotate(45)
translate(50, 50)
rect(-20, -20, 40, 40)

Another issue is the origin point of the transformation. By default, this
origin point lies at the origin of the canvas, i.e. the top left. This implies
that when doing rotations, everything rotates around the top-left
corner. This is counter-intuitive and against the expectations of our
users (G4).

To mitigate this we've created an additional, "center" transformation
mode, which uses the center of the object's bounding box as the origin
of transformations. Now when rotating a shape, the shape pivots
arounds its own center. This proved to be much more intuitive and
we've made it the default setting. It still causes issues with objects that
are visually grouped, since they all rotate around their own origin point.
In those cases, we instructed students to use the "corner"
transformation mode. Another solution would be to provide a way to
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group objects together and rotate around the group center. This is
something we've integrated into newer versions of NodeBox.

3.7.4 Implementing Value Tweaking

To implement value tweaking (described in Section 3.4.8) we converted
the position of the mouse to a text position in the code panel. This gave
us the character under the cursor. We expanded from that character to
include digits, periods and minus signs on both sides of the number.
Once we found the number, we replaced it with a "magic variable"
whose value we change whenever the user drags the mouse. When the
user releases the mouse, the old number is replaced by the new value of
the magic variable.

While this approach worked well in most cases, it broke down when the
sign of the number changes from positive to negative or vice versa.
Specifically, we encountered three distinct cases:

- If an addition goes from positive to negative the sign should change:

random(alpha+8) -> random(alpha-8)

- If a subtraction goes from negative to positive the sign should change:

random(alpha-8) -> random(alpha+8)

- But if a negative number turns positive, the sign should vanish:

random(-8) -> random(8)

To find the difference between the first and last case, we use the
Python parser to build an abstract syntax tree (AST). Within the AST,
these use cases are represented by three different classes: Addition
(binary addition), Sub (binary subtraction) and UnarySub (unary
subtraction, or a negative number). We find the location of our magic
variable in the AST and apply the correct replacement when inserting
the new value.

When using the throttle with random numbers, the values change for
every run, causing the output to flicker. We solved this by re-using the
same random seed for each run when dragging the throttle.

3.7.5 Data structures

When teaching NodeBox we began by introducing the language, then
explaining the built-in drawing commands. After that we would explain
variables, conditions and loops. However it took a while to understand
that to use the program effectively, users also needed an introduction
into data structures. More so than loops or conditions, data structures
are the core expressive tool of the language.
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This was an insight that took some time for us to develop, especially
because data structures are so ingrained in a programmer's brain that it
doesn't really make sense to think you would teach it to beginning
programmers. In fact, all programming books we've encountered start
with teaching the basic concepts like statements, variables, conditions
and loops. While these are important, students can only start to express
their problem in terms of a solution once being taught data structures.

We found that data structures (and specifically lists) are the key
building material for developing interactive projects. They provide a
language construct that bridges the students' idea and the machine.
The letters in a word are a list, the points in a Bézier path are a list,
search results return a list of websites, the pixels in an image are a list,
and so on. By teaching this concept early on, students would be able to
turn their ideas into a conceptual framework for talking to the
computer, even though they might still struggle with the syntax. This
key insight is what led to the development of NodeBox 2 and 3.

Through most of the course, we only taught lists as the basic data
structure. We found Python's support and "syntactic sugar" for creating
and manipulating very useful. We only taught associative arrays
("dictionaries" in Python) to a few students; we found the Python syntax
for them overly ceremonial and often resorted to using objects (which
carry their own set of issues). We almost never used classes or other
object-oriented features of the language, except for using them as a
simple data holder. We never used inheritance and only occasionally
used member functions.

3.8 Conclusion
In this chapter we demonstrated that a generative, imperative approach
can produce results that we can't easily produce using traditional
software applications such as Adobe Photoshop. Through features like
the NodeBox throttle, users can rapidly explore the boundaries of the
algorithms, leading to a broader approach. We've also seen that users
create entirely new aesthetics through the use of algorithms (such as
the Spamghetto example). We discussed a number of ways that caused
users to get stuck and made suggestions on how to mitigate this (like
improving error messages).

Overall we found teaching programming to graphic designers
challenging for two reasons. First off, students had difficulties
expressing their problems into a "plan" (Spohrer, 1986), which is an
important cause of failure to program (Shackelford, 1993). However, plan
composition is an essential skill when designing a computer program.
Secondly, they needed to convert that plan into a rigid, formal syntax.
There they would run up against syntax errors they were unable to
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solve themselves. This barrier is arbitrary: language syntax is unrelated
to the essential problem to be solved (the design itself). We also noticed
a shift of interest towards data visualization which required more data
processing operations based on lists.

The combination of these factors led to the research in functional
programming and the creation of NodeBox 2.
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Functional Programming4
In this chapter we will describe how we used functional programming
concepts and dataflow to build applications for generative design and
data visualization. We describe NodeBox 2, NodeBox 3 and NodeBox
Live, visual programming tools that use the box-and-wire paradigm and
a dataflow execution model. We also briefly touch on DataPipe, a
non-visual dataflow application for pre-processing large data sets. We
speculate that a visual programming would be a better fit for visually
oriented people such as graphic designers. In Section 4.7 we discuss
how we evaluated this approach.

4.1 Background / Related Work
Here we will highlight programming paradigms and software
applications that were important in inspiring the design of our
software.

4.1.1 Functional Programming

Functional programming is a programming paradigm that treats
computation as the evaluation of mathematical functions, and avoids
changing state and mutable data. It is rooted in lambda calculus, a
formal system of expressing mathematical logic based on function
application introduced by Alonzo Church (Church, 1951). As an example
take a function that checks whether a string is blank (empty or solely
consisting of whitespace). In an imperative programming language (here
Java) it would look like this:

public static boolean isBlank(String str) {
    if (str.length() == 0) {
        return false;
    }
    for (int i = 0; i < str.length(); i++) {
        if (!Character.isWhitespace(str.charAt(i))) {
            return false;
        }
    }
    return true;
}

Here is a similar implementation in Clojure, a functional programming
language:
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(defn blank? [str]
    (every? #(Character/isWhitespace %) str))

Although this example seems unrelated to generative design it
highlights a number of important distinctions. The functional
implementation has no (invisible) state, avoiding a typical error scenario
we encountered when observing students working with NodeBox 1. In
addition there are no off-by-one scenarios, no boundary conditions and
no multiple paths of execution, which are all typical error scenarios for
novice programmers (Johnson, 1984). We will see how we can use this
functional approach to reduce the complexity of visual programming in
NodeBox 2, 3 and Live.

Lisp / Clojure

Lisp is the second-oldest high-level programming language in
widespread use today. Lisp derives its name from "LISt Processor", using
linked lists as the ubiquitous data structures both for working with data
and to compose programs out of. Lisp source code is itself made up of
lists, allowing Lisp programs to generate and manipulate other Lisp
programs through a mechanism called macros.

Fluxus (Griffiths, 2005) is a live coding environment for 3D graphics,
music and games written in a Lisp dialect called Racket. Fluxus
leverages Lisp's read-eval-print-loop to build a live coding environment
(Figure 30).

Figure 30: Screenshot of Fluxus

Clojure is a modern dialect of Lisp created by Rich Hickey. Clojure has
an extensive collection of operations on collections. In its rationale it
cites Alan Perlis: "It is better to have 100 functions operate on one data
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structure than 10 functions on 10 data structures." (Perlis, 1982) The list
operations in Clojure served as an inspiration for the nodes in NodeBox
3.

Haskell

Haskell is a purely functional programming language with strong static
typing, named after logician Haskell Curry. It has many features
commonly associated with functional languages: lazy evaluation,
pattern matching, list comprehension,... 

In general, functions in Haskell do not have side effects. To represent
operations that deal with state or cause side effects, Haskell uses
monads. A monad represents a computation expressed as a series of
steps. The execution can happen at a later time, or not at all. An
example is the maybe monad which represent an optional return value:
either a single value or Nothing, meaning no value. For an in-depth
explanation we refer to (Wadler, 1992).

The Haskell state monad is a mechanism for attaching state to a pure
function. A state monad is a function that takes in a state, and outputs
the new state. This new state is than fed to the function again on the
next execution. This allows for a clean way to model a mutable
environment. The state monad served as the foundation for how we
implemented stateful nodes in NodeBox 3 and NodeBox Live.

4.1.2 Dataflow / Visual Programming

Dataflow models a program as a directed graph of data flowing between
operations. The first description of a dataflow system appeared in 1961
(Kelly, 1961). As an example, the OS X "Automator" application uses a
linear dataflow metaphor to automate repetitive manual actions, such
as encoding a folder of movies to a different format (Figure 31).
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Figure 31: Screenshot of Automator

There is no standard specification for dataflow. Therefore, similar
concepts have often different names in various implementations. A
node is sometimes called a "block", a "process", an "action" or some
other name. For an overview of the many variants of dataflow we refer
to the book by Carkci (Carkci, 2014). Here we will look at the
terminology as it applies to NodeBox.

A node is a processing element that takes a set of inputs, performs a
computation, and returns a set of outputs. The computation can be
seen as a black box. "Pure" nodes only operate on the incoming data;
the only way those nodes can send and receive data is via their ports,
which are the input and output connection points on the node. Sending
the same input data always returns the same output data. "Impure"
nodes have side effects: they might react to mouse events, make a
network connection, or play a sound effect.

Nodes have input and output ports. Ports are the holders of data and
have a type. You can see the input ports as the arguments to a function,
and the output as a return value. Data typically flows from the output
ports to the input ports through connections (sometimes called arcs or
edges).

A source or generator node does not have any input ports. It generates
data from scratch, or based on external events such as the network,
mouse or keyboard. A filter node can have many inputs and a single
output. It transforms the data, A sink node does have one or more
inputs but no output. It is a node that is executed for its side effects,
e.g. produce sound or render to the screen.

Collections of nodes and arcs are grouped together in a dataflow graph
or network. This is the "document" of a dataflow application.
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Sections of a graph can be grouped together into subnetworks. 
Subnetworks are a similar abstraction to subroutines in imperative
programming. A subnetwork is a part of a dataflow program that
performs a single function. Subnetworks looks similar to built-in nodes
on the outside but are built out of network of nodes.

Subnetworks can take their input from inlets, simple connection points
that pass the input from outside nodes further on to the internal nodes.
Output data can be passed through an outlet (or, in the case of
NodeBox, the rendered node.)

Graphs in NodeBox are always directed: that is, the data always flows in
the same direction (copy stamping, used in NodeBox 2, is an exception
to his). Also the graphs are acyclic meaning the connections in the
graph can't form loops.

We can make a distinction between functional nodes and stateful nodes. 
Functional nodes are idempotent: given the same input values, they will
always produce the same output values. Since their output is always the
same, the results of complex functional nodes can be cached. Stateful
nodes, on the other hand, retain local state. They might produce
different data every time they are executed. Since we want to avoid
state we can use state monads (explained in Section 4.1.1.2)  to feed in
the state as a parameter and take the return value as the new state. This
creates a feedback system that passes state along between executions.

Representing loops

One of the fundamental decisions we have to make when designing a
visual programming language is how to represent a loop. We can try to
mimic the imperative programming style using loop brackets (e.g.
Scratch) or nested networks (e.g. Quartz Composer). We can
re-evaluate parts of the network using different context variables (e.g.
Houdini, NodeBox 2). We can have nodes map over lists of data (e.g.
Grasshopper, NodeBox 3, NodeBox Live). All these approaches have an
impact on expressibility.

Scratch

Scratch is a visual programming language targeted at young people
(Resnick, 2009). It allows children to create interactive stories, games
and animations that can be shared online. Scratch is used succesfully in
schools, museums, libraries, community centers and homes. In 2014,
the Scratch community had over 3 million members. Scratch is
developed by MIT's Lifelong Kindergarten Group.
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Figure 32: Screenshot of the Scratch application

Programs in Scratch closely mimic the structure of imperative
programming. Statements are stacked on top of each other. Loops are
represented as brackets that have a fixed counter or exit condition and
contain a set of statements to be executed (see Figure 32).

Scratch avoids syntax issues of textual programming language, but still
deals with state issues inherent in procedural programming. This means
that anything but simple loops require loop counters. This makes it
cumbersome to loop over lists of data, a key requirement in data
visualization (see Figure 33).

Figure 33: Scratch program to loop through the elements of a list

Scratch is listed here as an approach we didn't pursue when designing
our visual programming environments.

Houdini

Houdini is a 3D animation application developed by Side Effects
Software. It has been used in feature productions such as Frozen, Max
Max and the Transformers franchise. Houdini is notable because of its
comprehensive procedural approach: it has operators for modeling,
particle simulation, animation and audio, compositing, dynamic
simulations, shading and rendering (see Figure 34).
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Figure 34: Screenshot of Houdini

Two aspects of Houdini inspired the design of NodeBox 2. First is
Houdini's idea of typed network where, within a network all nodes are of
the same type. This means that every available node in a subnetwork
can be combined with any other node. To import differently typed data
from another subnetwork you use a conversion node that can reference
a node within that subnetwork.

The second aspect is Houdini's concept of copy stamping. Normally,
data in Houdini flows downstream through a network of operators.
Stamping lets users communicate information upstream to operators
connected to its input. You can use this to vary the copies as they are
created. Parameters can use stamp expressions to extract data from the
copy context. The idea is somewhat similar to that of a loop index,
where each time through the loop, nodes can use the current index to
change their results.

Grasshopper

Grasshopper is a visual programming language plugin for the Rhino3D
computer graphics application (McNeel, 2010). Users can generate
entirely new geometry, or mutate existing geometry using a generative
node-based approach (Figure 35).
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Figure 35: Screenshot of Grasshopper and Rhino3D

Grasshopper uses a list-matching approach when combining multiple
streams of data (see Figure 36). Data is passed from one node to
another using lists of data. If the node doesn't expect a list the elements
of the list are mapped over the node function, producing a new list at
the other side. If we feed in two lists with a different number of
elements, Grasshopper chooses how to match the lists. It can use the
longest list and wrap the shorter lists, it can use the shortest list, 
stopping if that list runs out of elements, or it can cross-reference
elements, combining every input with every other input.

Figure 36: Different methods of list matching in Grasshopper

The list matching approach used in Grasshopper served as an
inspiration for NodeBox 3.
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4.1.3 Grammar of Graphics

The Grammar of Graphics is a book on data visualization written by
Leland Wilkinson (Wilkinson, 2006). It describes a set of grammatical
rules for creating graphics based on data. The book shuns chart
typologies, instead focusing on the principles that underlie all chart
types. It does this by deconstructing typical chart types to its essential
components, i.e. a scatterplot as a set of points where the X and Y
positions are connected to variables.

This approach is similar to the model we use in NodeBox 3. Both use a
pipeline approach to represent pure transformations from data into
graphics, implicitly looping over the data. The Grammar of Graphics
divides up visualizations in six distinct statement types: the data, the
statistical transformations, the scale, the coordinate system,  geometric
elements and guides. In NodeBox 3 these statement types are all
represented as different node categories.
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4.2 NodeBox 2
NodeBox 2 was designed as a solution for the usability issues
encountered with NodeBox 1. Our primary objectives where to make an
environment where users didn't need to adhere to an unforgiving
syntax and that would allow them to explore more. In addition, we
speculated that a program with a graphical interface would be more
appealing to designers than a text-based application.

NodeBox 2 is a cross-platform application for generative design and
data visualization. NodeBox 2 uses a dataflow approach and a
box-and-wire visual programming interface. It is designed to be
efficient and interactive: changes to the network are immediately
visible, and parameters can be controlled by dragging handles directly
in the viewer. The primary focus of the application is on geometric
shapes (Bézier paths), but images are supported as well. Even though
the primary interaction is through the nodes, the application makes it
easy to inspect and edit the underlying source code of all the nodes.

4.2.1 The Data Model

To visualize how NodeBox 2 works, imagine that a NodeBox project is
like an assembly line in a factory. Data (raw materials) from the nodes
(machines) is carried along connections (conveyor belts) to the next
nodes (other machines further down the line). At each node, the
incoming data is gradually transformed into a finished product. Each
node only does a single thing then passes its data to the next node. The
network view visualizes this "conveyor belt", with data flowing from the
left to the right.
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Each node has zero or more input ports and a single output port. Nodes
can be connected together using these ports. Data then flows from one
node to the other through the ports. In NodeBox 2, this data is either
geometric or image data.

To tweak the behavior of the nodes each of them has a set of
parameters. For example a wiggle node randomly transforms the
points of a shape; the amount parameter defines the extent of this
random transformation. Parameters have different types: for example
an ellipse node has number parameters for its position and size, as
well as color parameters for its fill and stroke. Parameters can have a
set value or be controlled by expressions, described below.

The rendered node is the final output of the factory. It is the result that
gets displayed in the viewer and that gets exported. However, unlike in
a factory it is very easy to change which node is the rendered node. The
rendered node is more like walking around in the factory and looking at
the output of a certain machine. This is useful when errors occur in the
network: changing the rendered node allows us to see at which point in
the network things went haywire. Users can view the output of the
rendered node while tweaking parameters of a selected node higher up
in the chain.

There are two types of nodes: generator nodes (which create new
shapes) and filter nodes (which modify existing shapes). The generator
nodes are nodes like rect,  ellipse,  line, ... These nodes
create new shapes from scratch without any external input. Compare it
to the raw materials that come into the factory. Filter nodes on the
other hand take in one or more shapes and change them. Examples are
the translate node which changes the position of the shape, or the
colorize node which changes the color of the shape. Generally there
are more filter nodes than generator nodes in a network.

Another useful metaphor is that of a river stream. Generator nodes are
the sources upstream that gradually flow downstream through a series
of natural filters. The terms upstream and downstream will be used to
refer to nodes that are relatively higher up and lower down from the
perspective of a single node.

4.2.2 User Interface

NodeBox 2 divides up the window into four distinct panels. Each panel
represents a view of the underlying data model (see Figure 37). At the
bottom right is the network panel. It shows all the nodes that are part
of the network and allows you to create connections between them.
When selecting a node in the network panel you can see its parameters
in the parameter panel at the top right. Here you can tweak the



4.2.2 User Interface

84

behavior of a certain node: a star node has parameters for the amount
of points and the inner and outer diameter of the shape. At the top left
is the viewer panel which shows the visual output of the rendered node
(the node with the yellow strip on top). The viewer also shows the
handles for the selected node, allowing you to change the parameters of
the node visually. (There is a one-to-one mapping of parameters and
handles, meaning they modify the same underlying data). The viewer
also has flags for showing the points and their indices, which is useful
for data visualization. Finally the code panel — at the bottom left —
shows the code for the selected node. It shows the user what is going
on "under the hood" of each node and allows you to change the
implementation. Changes are isolated to a single node instance (i.e.
changing the code of one ellipse node won't change the behavior of
other ellipse nodes).

Figure 37: Screenshot of the NodeBox 2 application

At the top of the window is the network path bar. Networks can be
nested into subnetworks, and the path bar shows you where you are
inside of the network.

The application uses a traditional document interface with options for
saving and exporting projects, copy/paste and undo/redo.

4.2.3 Interactivity

We designed the application so that changes to parameters are
immediately visible. Where possible we provide handles to control the
parameters of the node visually. Users could drag on-screen controls
and interactively see their changes in the viewer.
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This meant that even users with very little knowledge of the system
could open examples and make drastic changes just by selecting node
and dragging the handles (see Figure 38). Workshops participants
reported they loved tweaking both their own projects, and example
projects provided with the application. This allowed them to learn by
doing (G4) and arrive at new results by tweaking (G3).

Figure 38: Variations of the same network with only parameter changes

4.2.4 Transformations

In Section 3.7.3 we saw that transformations in NodeBox 1 introduced
accidental complexity. One issue was that "regular" affine
transformations were difficult to reason about since they started in the
top left corner. In NodeBox 1 we partially mitigated this through
"center-mode" transforms, but they would cause problems with
grouped objects.

In NodeBox 2 we simplified this by placing the origin at the center of
the screen. Newly created shapes will be created at the center (e.g. a
square of size 100 will run from -50, -50 to 50,50). Since all
transformations happen around the origin, operations like rotating the
shape will work as expected.

Since the location of the origin is important when reasoning about
transformations, we overlaid markers indicating its position on the
canvas. This allowed users to know where there composition was in
relation to the origin. In addition, we provided nodes like align and
fit which would automatically move their composition back to the
center.

4.2.5 Expressions

Expressions make the values of parameters dynamic. They allow
parameters to refer to each other, perform math, control animation or
stamp values. Expressions are similar to Excel formulas.
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The most common use for expressions is to link two parameters
together. For example, to force the rectangle node to always produce
squares, we could link its width and height together by setting the
height parameter to the expression width. This causes the two
parameters to change in sync. We can also refer to the parameters of
other nodes by prefixing the name of the node, such as
ellipse1.width (see Figure 39).

We can combine this with mathematical expressions to create
relationships between elements. For example we can force an ellipse to
always be below a rectangle by using the expression
rect1.y + (rect1.height + height) / 2 for its Y parameter. A
number of common mathematical functions like the sine and cosine are
provided under the math package.

Figure 39: An example of using expressions

Expressions are also used to control animation. A special constant (
FRAME) could be used in expressions to refer to the index of the
current frame of animation. This constant could be used in any
expression to create an ever-increasing counter. For example, setting
the angle parameter for a rotate node to the expression FRAME would
animate the rotation of the shape. The frame constant can be combined
with the wave function to convert ever-increasing values into
back-and-forth values. The wave function supports sine, triangle,
square and sawtooth wave types.
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Because not all parameters are numeric NodeBox provides expressions
for converting to different data types, such as the rgb and hsb()
functions that generate color values or the trim() function which
removes spaces in strings, useful for text processing. In addition
functions are provided for generating random values or restricting a
value between a certain minimum and maximum ("clamping").

4.2.6 Copy Stamping

In NodeBox 2 it is trivial to create many copies of the same shape. For
example, a grid of rectangles can be obtained by using the rect,  grid
and place node (see Figure 40). However, what if we wanted each
rectangle to have a different size? In the assembly line metaphor, the
rectangle is already created and is merely copied on all elements of the
grid. There is no way to change its parameters once it has "exited" the
machine that created it.

Figure 40: A grid of rectangles

To solve this we will need to distort the metaphor of the assembly line
to allow for upstream changes of nodes. In other words, instead of only
travelling downstream, some operations will travel back upstream. In
our example, the place node will travel back upstream to the rect
node and instruct it to produce a differently sized rectangle for every
copy.

To do this, copying nodes (e.g. place or copy) assign variables in the
global context that can be picked up by the upstream nodes (in this
case the rect node) when they are re-evaluated. In other words, the
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stamp expression controls the value of a parameter at each iteration
through the loop. The intent is to introduce the concept of a loop index, 
where each time through the loop, nodes can use the current index to
change their results. Figure 41 shows how NodeBox 2 first evaluates the
template geometry, then re-evaluates the rect node for every copy,
updating it with new width and height values.

Figure 41: Copy stamping in NodeBox 2

A stamp expression looks like this: stamp("CNUM", 42). The key CNUM
refers to the current index of each copy. By using this type of
expressions we can create variations for any parameter of the upstream
nodes (see Figure 42).

Figure 42: Before and after copy stamping

Copy stamping can allow variations to be created efficiently (G1). Since
copy stamping allows control over the iterations of the loop, it can
produce designs that are unfeasible to create manually (G2).

4.2.7 Data Stamping

Data Visualizations in NodeBox 2 are produced using the datastamp
node. The input to the node is a tabular data file (a simplified version of
a spreadsheet represented as a comma-separated value file or CSV). 
For each row of the data file, new geometry is created. The datastamp
node iterates through the rows, re-rendering all connected upstream
nodes and exposing global variables to be used in stamping expressions.
Nodes can use these variables to change their font size or use different
colors or shapes.
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As an example, imagine that we want to make a bar chart based of the
GDP of different countries. We create a datastamp node that refers to
CSV file. The node exposes a number of variables, for example
data_value_0 referring to the data of the first column. The node would
re-run the upstream nodes as many times as there are rows in the CSV
file. In the height parameter of a rectangle we could then write
stamp("data_value_0", 100) which would set the height dynamically
based on the data (see Figure 43).

Figure 43: NodeBox screenshot showing data stamping

The datastamp node provides a number of useful keys: the relative value
(the total of the column divided by the current value), the normalized
value (the current value within the min-max range of the column), the
column total, the "running" total (the accumulation of values up until
this row), and the running normalized total (the running total divided by
the min-max range). These pre-calculated values are necessary to
create different types of visualizations. For example the normalized
value and running total are used when creating pie charts, where the
total has to add up to 100% (360 degrees) (see Figure 44).
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Figure 44: Pie chart showing lines of code in sections of the NodeBox
source

NodeBox 2 expects the imported data to be well prepared for use
(single header row, no extraneous comments in the spread sheet, no
empty cells).

Data Stamping allows user to quickly visualize large data files (G1).
However we will argue in Section 4.2.13.2 that the stamping metaphor
limits its ease of use (G4).

4.2.8 Node + Code

Early on in the design we made the decision that we didn't want to hide
the code. Although we used nodes as the primary metaphor in the
interface, we still found it important that users would be able to see the
code that made up the nodes. We wanted users to realize that behind
every node was a piece of code that made it work, and more
importantly, that they could change this code and see the effects
immediately (G4).

The expression language, described above, was an intermediate layer
between the nodes and the code. Expressions were designed to be easy
to use and — especially for simple expressions — easy to understand.
They made users understand that a little bit of code could make their
generative designs more dynamic. Internally, we jokingly referred to
them as the "gateway drug" to coding.
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Changes to the code only affected the selected node instance. This
meant that users were free to change the code without accidentally
breaking the entire application (G4). We integrated simple code changes
into the curriculum and online documentation.

4.2.9 NodeBox 1 Compatibility

The functional model of NodeBox 2 works fundamentally different than
the imperative model of NodeBox 1. In NodeBox 2, nodes transform the
incoming geometry through a set of filters. Each node performs a single
operation on all of the data and passes it on to the next node. In
NodeBox 1 these steps would be mixed together in a single loop.

To provide users with a bridge from NodeBox 1 to NodeBox 2 we made
the Python API backwards-compatible. We built a glue layer on top of
the NodeBox 2 graphical objects that accepted NodeBox 1 commands.
This meant that most of the NodeBox 1 scripts also ran in NodeBox 2
(G4). These scripts would be represented as generator nodes and could
be combined with all the other nodes of NodeBox 2.

4.2.10 Creating Custom Nodes

Functionality inside of NodeBox 2 is provided through built-in nodes.
These are nodes that ship with the application. If there is functionality
missing in the application we encourage users to build it themselves by
creating a custom node. They can either start from scratch or base their
work on a built-in node whose functionality is similar to what they want
and modify the code. Users can also define handles for their node,
either by combining existing handles or creating a new handle from
scratch.

When creating custom nodes, users use the same exact API as the
built-in nodes. Because our nodes are not "special", users can create
nodes with the same expressive power as the built-in nodes. In fact all
of the built-in nodes are contained in a regular project that is imported
on startup (see Figure 45). 
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Figure 45: An overview of the corevector library containing all the built-in
vector nodes

Users can extend the application in any way they want by calling all
available APIs. This integration helps in re-using existing libraries,
enhancing efficiency (G1). If they get stuck or unsure how to do
something, they can examine the code for the built-in nodes (G4). And
because they use the same APIs, users are not restricted by arbitrary
constraints.

Because the node code was always visible and served as an example for
our users, it was very important that the quality of the code was
exemplary. We focused on providing clean, well documented code for
all of our built-in nodes.
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4.2.11 Visual results

Finish Surnames — Eemeli Nieminen (2010)

In 2010, one of our students from Lahti, Eemeli Nieminen, wanted to
use NodeBox to create a data visualization showing the popularity of
Finnish surnames. This was the first visualization of a publicly available
dataset created using NodeBox 2. The font size of the surnames is
scaled according to their popularity (Figure 46).
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Figure 46: "Finish Surnames", Eemeli Nieminen, 2010

Because NodeBox 2 was primarily made for generative design, initially
we didn't have options for integrating external data. Because we could
extend NodeBox on-the-fly we designed a precursor to the datastamp
node during the workshop, and afterwards integrated it into the
NodeBox core.
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Three Minutes and Thirty Eight Seconds — Sarun Pinyarat (2011)

This project, created in the 2011 Helsinki workshop, started out of
Sarun's personal interest in "Cognitive Surplus" (Shirky, 2010), the idea
that humans now have free time that they can decide to spend however
they want. Sarun was fascinated with the fact that people opt to spend
that time watching "bad" content, such as the "Friday" music video by
Rebecca Black, the most disliked music video on YouTube. The project
takes the total time humanity has spent watching this music video
(roughly 1,033 man-years) and contrasts this with the amount of effort
needed to create popular open-source projects, such as Firefox or
Android (Figure 47).
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Figure 47: "Three Minutes and Thirty Eight Seconds", Sarun Pinyarat, 2011
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Sun Flowers — Cvijeta Miljak (2011)

The Sun Flowers project visualized the amount of daylight throughout
the year in different regions of the world. It shows the sometimes stark
differences between summer and winter in northern countries such as
Finland (Figure 48).
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Figure 48: "Sun Flowers" — Cvijeta Miljak (2011)

We Want Sex (Equality) — Alice Lucchin and Stefano Zanini (2011)

This project was done during a commercial workshop organized in
Turin together with the TODO design group and the Density Design
research group. The work focuses on the difference in gender
distribution of the Italian local politicians, visualized in a tree structure.
It clearly highlights the fact that, although Italian female politicians are
better educated and younger than their male colleagues, they are still
totally outnumbered by them (Figure 49). 
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Figure 49: "We Want Sex (Equality)", Alice Lucchin & Stefano Zanini, 2011

4.2.12 Evaluation

To evaluate our approach we used NodeBox 2 during design workshops.
We observed how the application was used and we surveyed
participants on the user-friendliness and efficiency of the software.

Node-Based Interface

From questionnaires we learned that, in general, users found the
application — after initial training — to be user-friendly (G4). They
appreciated having an overview of all available functionality (the nodes)
in one place. They liked being able to export their work in PDF so that
they could work with it in other applications.

Users remarked being able to create complex shapes that would be
difficult or impossible to make in traditional software such as Adobe
Illustrator (G2). They liked being able to modify the parameters and
immediately see the results in the viewer. Users reported they spent a
long time playing with the parameters just to see which results would
appear. The distinction between selected and rendered node, while
initially confusing, was reported as a very powerful tool in rapidly
exploring variations of a design (G3).
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Building Networks

During tutorials we observed that students sometimes had trouble
connecting networks as shown by the teacher. For example, they would
connect them in reverse (e.g. transform -> rect instead of rect ->
transform), even though that connection doesn't make sense from a
conceptual point of view. This demonstrates that novices and advanced
beginners lack the "big picture". They do not yet have a holistic
understanding of the operation of the system (see Dreyfus model
Section 2.6.5).

We also observed this behavior when students made their own projects.
Even though they understood at the end of the lectures how nodes
could be connected, they had trouble figuring out how to translate their
idea into a correct set of nodes. This corroborates the findings by
Spohrer (Spohrer, 1986) on plan composition.

Data Visualization

Later NodeBox workshops focused on using the tool for data
visualization. Overall users found it easy to follow tutorials but harder
to build up their own visualizations.

We speculate that this relates to the fact that data stamping caused a
lot of confusion, making students unsure of what to do next (G4).
Because the flow when using data stamping is no longer linear (you
have to go back and forth to build up expressions) this can cause
difficulties when building up a plan.

Transformations

Due to the location of the origin, we observed much less errors with
regards to transformation. We argue that this new method allows users
to be less afraid of transformations and become more self-reliant (G4).

Because compositions are created on an essentially infinite plane, some
students remarked that they found it difficult to guess the final size of
their project. In response, we added a "page" bounding box that is used
when the document is exported.
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4.2.13 Lessons Learned

Data Preparation

One key component of data visualization projects is the preparation and
cleanup of the data, with reports indicating that data scientists spend
about 1-3 hours on it every day (King, 2015). Tutorial material is often
deceptive in this regard as the example files are already carefully
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prepared in the format NodeBox 2 expects. Real-world data (e.g. from
governmental websites) is often much messier.

NodeBox 2 doesn't have built-in support for filtering or aggregating the
data. We asked users to clean up their data and pre-compute needed
aggregate data in Google Docs or OpenRefine before using it in
NodeBox 2. This required going back-and-forth between the data and
the visualization, as users figured out they needed an additional piece
of data that NodeBox 2 couldn't compute for them. Some complex
aggregations or data mining operations required programming (often in
NodeBox 1). This made users less self-reliant than if the application had
built-in facilities for simple data processing (G4).

To mitigate this we built facilities in NodeBox 3 (see Section 4.4) for
simple aggregations, and also provided a tool for working with large
data sets (see Section 4.3).

Copy Stamping

Throughout NodeBox 2 we used copy stamping and data stamping as a
way to change the values of parameters in response to changes in the
data. The implementation of copy stamping requires it to re-evaluate
upstream nodes for each copy. Because this changes the fundamental
nature of the assembly line metaphor (because data travels upstream
through the expressions), you lose some of the benefits of dataflow.

The biggest disadvantage is that you can no longer visually inspect each
step to see where things go wrong. Stamped nodes, because they rely
on downstream nodes to provide global values, have no useful output
when you inspect them on their own. Not being able to inspect the
output of intermediate nodes makes networks harder to debug. A lot of
the debugging needs to happen in your head as you're trying to replay
the evaluation of the network. Even for experienced users this causes
issues, especially as expressions grow larger.

A second disadvantage of copy stamping is that it is compute-intensive.
Because it requires re-executing parts of the node graph that were
already executed, the system performs a lot of duplicated work. This
performance issue was particularly evident when multiple copy
stamping operations were used.

In short, copy stamping in NodeBox 2 created an abstraction that
doesn't cleanly decompose. This makes building larger components out
of smaller components difficult or impossible due to complexity and
performance issues.

We learned that this metaphor was unsustainable in the long term, and
moved to a different approach in NodeBox 3 (see Section 4.4).
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Expressions

Using expressions in parameters is an important tool to create
compelling designs and visualizations. However, we observed that
expressions used in data visualizations could grow to be very large. This
is a consequence of the fact that we can only work with the raw values
from the datastamp node, so all of the value conversion needs to
happen at the location of use. For example here is the expression for
converting temperature to an RGB value:

color(
    stamp("data_value_2", 10.0) / 30.0, 0.00,
    1.0 - (stamp("data_value_2", 10.0) / 30.0),
    1.00)

Large expressions — in combination with the copy stamping issues
mentioned above — became difficult to debug. Users had to resort to
temporarily removing parts of the expression and re-executing, which
quickly became tedious.

We found that even we, as experienced users, had difficulty reasoning
about the expressions in our head. Again this limits the amount of
complexity we can introduce in a system.

We partially mitigated this by introducing pre-processed, normalized
values and running totals. Even so, expressions are still too large to be
easily readable. To reduce complexity further we could do a number of
pre-processing steps on the data beforehand. For example, data scales
(that map values from data space into visual space) could be defined
outside of the parameter expressions. This would also improve reuse. A
well-known approach for this is detailed in the Grammar of Graphics
(Wilkinson, 2006). In NodeBox 3 we take a similar approach.

Hidden dependencies of expressions

Expressions, because they referenced other nodes, create an additional
set of hidden dependencies (next to the dependencies by the nodes,
which are easily visualized by their connections). To be able to evaluate
the network graph we need it to be acyclic. Inadvertent use of
expressions could cause circular dependencies.

If we would continue development on NodeBox 2 we would visualize
these hidden dependencies, for example by drawing together with
regular connections in the network view, but using a different color.
Extensive research has been done around visualizing dependencies in
spreadsheets (Shiozawa, 1999)(Hermans, 2011) and these techniques
could be ported to NodeBox 2 as well.
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4.2.14 Conclusion

Compared to NodeBox 1 we noticed a general improvement in the
quality of the work (G2). We also noticed that students were able to
spend more time working by themselves before they got stuck and
needed guidance (G4) (we will examine this observation in more detail
when we talk about Grasp, in Section 4.7). In addition we saw surprising
results that were less linked to the examples bundled with the software.
This implies students were free to explore more and discover the
boundaries of the software (G3).

The major challenge with the software was understanding and writing
expressions used for copy stamping. Because copy stamping conflicts
with the conceptual model of the assembly line, it made reasoning
about data flow difficult, not just for beginners but also for experienced
users. We discovered that expressions could grow so large they became
impractical to debug, limiting the scope of what was possible with the
program.

This issue required fundamentally changing the execution model of the
application. We decided to abandon the copy stamping approach and
move to a new approach where the fundamental data type is a list, and
all operations on the network are essentially list operations. That is
what we did in NodeBox 3.
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4.3 DataPipe
Before data can be used for visualization, it often needs to be filtered,
aggregated and mined to produce a "clean" data file that can be used in
a visualization program (Fry, 2007). DataPipe (De Bleser, 2014) is a data
processing tool that can work with multi-million row input files and
through filtering, sampling and aggregation reduce them down to
thousand- or ten-thousand row files, well-suited for visualization in
different versions of NodeBox (see Figure 50).

One common use case is to let DataPipe produce a random sample from
a larger data file, in essence giving a "lower-resolution" file to work with
during development in NodeBox that can be switched out to the
"full-resolution" file on the final render. This greatly improves the
interactive speed of operations (G1).
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Figure 50: Screenshot of the DataPipe application

DataPipe's user interface consists of a simple command language where
chains of commands can be connected together as a simple version of
dataflow (see Section 4.1.2). DataPipe was designed to process
larger-than-memory streams by chunking the data into usable parts
using Clojure's lazy evaluation feature.

DataPipe was used in the "Quantified Self" masterclass held at Sint
Lucas Antwerpen in 2014. It was used to visualize mouse and keyboard
information gathered over multiple months (see Figure 51).
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Figure 51: Heatmap of mouse positions
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4.4 NodeBox 3
The issues with expressions and copy stamping caused us to
re-evaluate our approach with visual programming. In addition we
realized that data visualization tools needed to manipulate the data
itself, and so a new system should be handle more than just geometric
data.

NodeBox 3 kept the cross-platform foundation and general look of
NodeBox 2. However, the core execution engine was rewritten to get
rid of copy stamping and expressions. We elevated lists as the primary
abstraction (see Section 4.4.2) and used the concept of list matching
(see Section 4.4.4) to create variations. To support data manipulation
and not just geometric manipulation the system supported a wide
variety of types through unified ports and parameters (see Section
4.4.3).

4.4.1 User Interface

The interface to NodeBox 3 looks similar to NodeBox 2. We changed the
orientation of the nodes from horizontal to vertical to accommodate for
multiple ports (see Figure 52).
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Figure 52: Screenshot of NodeBox 3

NodeBox 3 also adds a "data" view, which explicitly shows the output
data of a node in a tabular format (see Figure 53). This allows us to
verify that a node created the expected number of elements. The data
view was often used in debugging (G4).

Figure 53: Screenshot of the NodeBox 3 data view
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4.4.2 List as primary data structure

In NodeBox 1 we learned that teaching users data structures —
especially lists — gave them a tool to express problems in the solution
domain (see Section 3.7.5). In NodeBox 3 we made the list the pervasive
data structure. We no longer treat the data being processed as a single
opaque data structure, but as lists of objects that can be manipulated.
In NodeBox 2, the copy node generated an opaque Geometry object. In
NodeBox 3 it generates a list of Path objects. This has the advantage
that all list operations (slice,  shuffle,  combine) can be applied
to it.

This also applies to non-visual data. When creating a visualization of all
the US ZIP codes, each ZIP code is an item in a list; this list can be
sorted, reversed, sampled (to visualize only 1%), or aggregated. Lists are
also used to represent the pixels in an image, the points in a shape or
the words in a piece of text. The list operations are generic and can be
applied to any kind of list.

4.4.3 Ports and Parameters

NodeBox 3 unifies ports and parameters. There is a one-to-one
relationship between the ports on top of the node and the parameters
visible in the parameter pane (see Figure 54). 

Figure 54: Parameters and Ports show the same values. Note that the first
port of the rect node (position) corresponds to the first parameter.

This implies that any parameter can be driven with data from another
node, as long as the types are compatible. For example, the height of a
rectangle could be controlled by a column of prices coming from a
tabular data file. Given multiple prices, this would create a bar chart.
However, since we now have many values feeding the port of a single
node, we will need to deal with this inconsistency. We solve this by
using list matching.
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4.4.4 List matching

Loops in NodeBox 3 are implicit. Most nodes only deal with one element
at a time (e.g. the transform node only transforms a single shape). To
create multiple copies of a shape, we feed in a list of values to one of
the ports. We then use a list processing construct similar to the map
operation in functional programming where we map over a list of
elements, evaluating the node for each item in the list. We assemble the
return values into a new list at the other end.

As an example, to create a grid of rectangles, we use a grid node to
create a list of points laid out in a grid. We then connect this list of
points to the position port of the rect node, which creates
rectangles for each point in the input list (see Figure 55).

Figure 55: NodeBox 3 executes the node as many times as there are inputs

To create variation, we can feed in multiple lists at the same time. For
example, a text node used for drawing text could have both a list of
strings (the text to display) and a list of positions (coming from a grid
node). NodeBox will match the list of strings and the list of positions,
creating a resulting item for every combination (see Figure 56).
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Figure 56: List matching with lists of equal size

In this example the lists have the same length. But what if they have
different lengths? What if you have only 2 items of text and 9 positions?
In that scenario, there are multiple solutions we can take:

- Match on the shortest list: stop processing the lists as soon as the
shortest one runs out. This is the scenario we took in the beginning of
NodeBox 3. This is also the way that Clojure's map function operates on
multiple lists.

- Match on the longest list: only stop processing lists when the longest
one runs out. For all shorter lists, cycle them. So we have a list with five
names ["Alice", "Bob", "Chad", "Dave", "Emmet"] and two
colors ["Red", "Blue"], we will generate the following pairs:
Alice - Red,  Bob - Blue,  Chad - Red,  Dave - Blue, 
Emmet - Red. 

- Crash: when the lists are not of the same length, refuse to perform
the computation until the users decides what to do. This is the
approach the Wolfram Language takes. Although it seems drastic, it
solves the off-by-one errors resulting from longest-list matching. It
also means that cycling needs to be made explicit. We will discuss this
approach when we talk about NodeBox Live, in Section 4.5.1.

NodeBox 3 uses longest list matching (see Section 4.4.9.1 in Lessons
Learned to find out why we chose this solution). We will repeat the
procedure for each item in the longest list. Shorter lists are cycled: we
repeat their items until we run out. (see Figure 57).
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Figure 57: List matching with lists of different size

List matching works across multiple nodes. Because feeding a rect
node with a list of points creates another list at the other end, we can
use that list further down the chain, for example to set colors (Figure
58).

Figure 58: List matching across different nodes

4.4.5 Data Visualization

NodeBox 3 redesigned NodeBox 2's data stamping approach. When
importing an external tabular data file, such as a CSV file, NodeBox 3
returns a list of associative arrays (also called maps or dictionaries). For
each row in the file, NodeBox associates the value with the name of the
column header. To retrieve data from an associative array we provide
the lookup node. Given a column name this will generate a list of the
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values for a single column. This is often used as a first step when
visualizing CSV data.

Figure 59: Typical NodeBox 3 visualization process

To visualize categorical data (e.g. types of accidents) we first figure out
the distinct values of a column (using the distinct node), then create
a lookup table by associating them with a specific color or shape using
the zipmap node (this terminology is inspired by Clojure's standard
library). Then we can use this lookup table to transform our data, for
example by using color (see Figure 60).

Figure 60: Example showing categories. "Shipwrecks of California", Jan
Aulbach, 2012
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Over time we've established a pattern (Alexander, 1977) that
demonstrates how visualizations in NodeBox 3 work (see Figure 59). By
teaching this both in workshops and in online learning materials, we
can make users more efficient and self-reliant (G1, G4).

4.4.6 Building Abstractions

When projects get bigger, programming systems offer methods of
abstraction to split up the complexity and reduce duplicated
functionality. In imperative programming, procedures are a method of
abstraction. In object-oriented programming this role is served by
classes. In NodeBox 3 this method is called a subnetwork. Subnetworks
group sets of nodes together into their own isolated space. Once
grouped together, subnetworks function similar to built-in nodes (see
Figure 61).

Figure 61: Example of a subnetwork describing a single space invader.
Once created, different variations can be produced.

Being able to group together nodes allows users to build complex
visualizations faster and with less duplication of effort (G1).
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4.4.7 Visual results

Goldberg Variations

This project was created during the 2012 workshop at the Royal
Academy of Art in The Hague (NL). It showed the famous works of Bach
visualized in NodeBox. The data is based on the MIDI files of the works,
using a custom node to import the midi data into NodeBox (Figure 62).



4.4.7 Visual results

117

Figure 62: "Goldberg Variations", Anton Sovetov, 2012
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Eurovoices

This visualization, created during the 2013 Vilnius workshop, shows the
predictability of the voting process of the Eurovision contest. What
emerges naturally from this is the typical “block voting” where
countries vote for other countries they like out of political reasons, not
necessarily because of the quality of the song (Figure 63).
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Figure 63: "Eurovoices", Dalia Kemeklytee and Viktorija Pampuscenko,
2013

Fifty years of Film Speech

This project was created during the same 2013 Vilnius workshop. It
shows the frequency of the 30 most common words used in english
films from 1952 to 2012. In it, you can trace the importance of words like
"family" or "sorry".

The visualization was based on over 300 MB of subtitle data. This was
then filtered down and aggregated. The designers used NodeBox to
generate custom graphs in the shape of sound waveforms, each
representing the usage of one word through time (Figure 64).
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Figure 64: "Fifty Years of Film Speech", Jonas Lekevicius, Juste Ziliute,
Augustinas Paukste, 2013

4.4.8 Evaluation

Just as with previous version of NodeBox we used this version
extensively during workshops. We observed how students used the
application. We conducted in depth interviews with some of the
participants. At the end of the workshop we asked users to fill in a
usability questionnaire.

Node-Based Interface

Almost no users had worked with NodeBox 2. They compared their
experiences with traditional software, or with programming (minority).

Users remarked that the node-based interface allowed them to produce
results quickly and change them easily (G1, G3). They found the
architecture of the program to be logical, and found that it provided a
unique way of thinking, unlike any other application. They remarked
that it could easily process large amounts of data. Some users familiar
with coding preferred this approach over textual programming (G4).

After initial training they found the node approach logical and found
the functions of the nodes clear and helpful. They appreciated the
visual interface of the software and remarked that it looked less
intimidating than other applications.
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Visual Output

Users remarked that through the program they could create unique
images that they couldn't produce in Adobe Illustrator or other
applications (G2). They found the program fun to play with because
they could experiment and get unexpected effects. They liked that
some "mistakes" produced cool-looking results.

Debuggability

The visual functional node-based approach makes debugging easier.
Users can visually inspect the output of every node in the network,
similar to looking at the output of every machine in an assembly line.

We taught a debugging technique during workshops:

1. When the output is not what is expected, examine every incoming
node connection.
2. If the previous node is correct, the problem has to be in the current
node.

We observed that users could solve the majority of issues using this
simple debugging techniques. This made users more self-reliant and
reduced workload for teachers during the workshop (G4).

The Right Node

Users remarked that the hardest part was knowing which node to pick
next. This correlates with Spohrer's findings on plan composition
(Spohrer, 1986). In addition, the wording "knowing which node to pick
next" indicates a linear step-by-step approach instead of a "big picture"
approach, similar to Dreyfus' assessment of advanced beginners
(Dreyfus, 1980).

Plan composition is essential complexity: it is knowing how to convert
the problem domain to the solution domain. Gradually building up this
skill makes users more competent and self-reliant (G4).

In NodeBox this requires knowledge of all the nodes, what they do and
where they can be used. During courses we provide a wide range of
task-based tutorials and examples. Each of these will demonstrate a
pattern of composing nodes that can be used when solving related tasks
(see Figure 59).
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4.4.9 Lessons Learned

Different Methods for List Matching

Test versions of NodeBox 3 used shortest list matching. To support
cycling we introduced the concept of "infinite" lists based on
sequences, much like Clojure's lazy sequences (see Section 4.1.1.1). Since
their size is unbounded they would always be larger than the input
coming from e.g. a CSV file. However, unlike in Clojure, users constantly
modify the network, connecting and disconnecting nodes, resulting in
intermediate states where only infinite lists were connected to a node.
This caused the system to try to process infinite lists. We tried to solve
this by having a configurable object limit in the viewer. Ultimately, we
decided this was too much of a workaround and we switched to longest
list matching.

Off-by-One Errors

List matching can introduce subtle off-by-one errors. Imagine we have
a list of 20 preset colors we cycle over. Now imagine we have a list of
monthly sales. Normally, we'll have more than 20 sales, so the matching
won't be a problem. But if we have less than 20, the list of colors will be
the longest list, and we will show some sales multiple times. This exact
issue has come up in workshops before and can cause visual artifacts
that are hard to spot (see Figure 65).

Figure 65: Example of off-by-one error. Note overlap in last scenario.
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Subnetworks as Abstractions

We introduced subnetworks as an abstraction to split up complex
networks and to support unwrapping of nested data structures.
However, the only method for re-using subnetworks in a different part
of the project (or other projects) is to duplicate them. This violates the
Don't Repeat Yourself principle (Hunt, 2000). By duplicating networks we
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have multiple independent copies that need to be kept in sync. Changes
to one version need to be manually carried over to the other version.
This hampers the ability to build clean abstractions and harm efficiency
in larger projects (G1).

Custom Code

Although NodeBox 3 added support for integrating external code, we
didn't include a built-in editor for this code. We argue that this is a
mistake. It made it less direct for users to create their own custom
functionality when they needed it, instead opening up another program
and linking the code there.

Another disadvantage is that users were not able to look at the
implementation of the built-in nodes. This means that even if you were
able to write Python, you couldn't learn from examples how to call the
NodeBox APIs.

We solved this in NodeBox Live by extracting the "runnable" aspect of
both node networks and code into a uniform concept which we called
the function.

The Web

One common feature request was to be able to publish projects made in
NodeBox on the web. Because the application was written in Java there
was no simple way to export this to JavaScript. We experimented with
rendering on the server but this could not be used for real-time
animation.

We then created a version that had an export option where all nodes
had a double implementation, both in JavaScript and in Java. We found
that this was tedious for two reasons: one, we had to maintain two
different versions and keep them in sync. Two, because the desktop and
web platforms have fundamental differences it was sometimes
impossible to port the node as-is to the web. We decided to port not
just the nodes, but the entire application to the browser and called it
NodeBox Live (see Section 4.5).

4.4.10 Conclusion

NodeBox 3 retains all the advantages of NodeBox 2 in terms of ease of
use. In addition the "list matching" model improved understanding of
complex networks and improved debuggability. Because list processing
was a core principle built in to the software, it made complex
visualizations and generative designs possible. Subnetworks provided a
useful approach for working with nested data.
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NodeBox 3 is in active use today. A number of challenges that came up
(list matching, needless copying of subnetworks) can be mitigated in the
current version.

To support web export, we decided to port the entire application,
including the user interface to the web. That version is called NodeBox
Live.
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4.5 NodeBox Live
NodeBox Live is a web-based version of NodeBox 3. The model is
functionally identical to NodeBox 3, with a few important exceptions:
subnetworks are replaced with functions, code and nodes can be used
interchangeably and master lists prevent list matching errors.

4.5.1 List Matching and Master Lists

Our studies and observations showed that users preferred the "list
matching" approach over the "copy stamping" approach. Users could
build projects faster and with less help than in NodeBox 2 (G4). We've
adopted the same list matching engine in NodeBox Live as well.

One issue that came up in NodeBox 3 was that it wasn't always clear
how lists would be matched. Users had a preconceived notion in their
head of which list would be the "longest list". For example, when
working with external data, they assumed that the rows of data would
be longer than their list of chosen colors. However, sometimes due to
data filtering or user error, that list of colors would become the longest
list, resulting in visual bugs that were hard to spot and resulted in
inaccurate visualizations (see 4.4.9.2).

In NodeBox Live we fixed this by introducing the concept of a "master
list". Instead of the system deciding which list to cycle by looking at
their sizes, users explicitly set which list is the longest. The final output
will never have more items than this master list, and it will never wrap.
This helped in debugging visual errors at the cost of introducing extra
complexity (G4).

4.5.2 Subnetworks vs Functions

In NodeBox 3 we introduced subnetworks as an abstraction. However
we saw in Section 4.4.9.3 that subnetworks could not properly be
reused, reducing efficiency in larger projects.

In NodeBox Live, we solved this issue by making functions the main
abstraction. Functions bundle functionality, just like subnetworks do.
However networks use instances of these functions so that when the
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function implementation changes, it is picked up everywhere that
function is used. This promotes reuse and improves efficiency (G1).

4.5.3 Nodes + Code

Designing the core abstraction around functions made it possible to
include JavaScript functions as well. We designed networks so that they
could be called in the same way as regular JavaScript functions
(multiple arguments in, single argument out). This allowed users to "mix
and match" functions based on code and networks. In addition to a
network editor, we also integrated a code editor so that JavaScript
functions could be created and modified from within the application.
This allowed novice users to pair up with users proficient in
programming (G4).

Projects can include external JavaScript libraries as well. We used this
mechanism to include the Box2D physics library for a workshop project
(see Figure 66). By allowing users to extend the program through
external libraries they can expand its possibilities, providing them with
more functionality and thus broaden their approach (G3).

Figure 66: "Raging Revolving Door", Quinten De Meester, 2015

4.5.4 Web Application

As a web application, NodeBox Live can import data from web
resources using JSON or CSV. Projects can be exported to
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web-compatible formats such as SVG and GIF. Projects can also be
embedded on other web pages using iframes (similar to embedding
YouTube movies).

NodeBox Live also exposes a JavaScript API. It allows users to start and
stop the animation or change the parameters values of the network
(these changes are just applied in memory and not saved). Figure 67
shows an example where conference interactions on Twitter could be
explored using an interactive interface.

We provided two specific ways of interaction targeted to two levels of
the Dreyfus model (see Section 2.6.5). Advanced beginners will likely
want to integrate their project on a blog or portfolio website with
minimal interaction. There they use the same method as used for
embedding YouTube videos. Competent and Proficient users will want
to have control over the behavior of the project, and will likely use the
JavaScript API.

Figure 67: "Digital Humanities Benelux Tweep Interaction", Ben
Verhoeven and Florian Kunneman, 2015

This solves one of the big issues with NodeBox 3, namely that projects
could only be viewed as static images or non-interactive animations
(see Section 4.4.9.5). Embedding allows users to integrate their projects
into existing websites or blogs, without having to port the project to a
different system (G1). It allows them to build interactive projects that
they couldn't do before (G2). And because NodeBox Live projects are
built on web standards, all their knowledge of the web is transposable
(G4).

4.5.5 Integrated Help

Because our application ran on the web we had the opportunity to
integrate the help pages directly into the application (see Figure 68). 
Every node has a "help" button showing a description and examples.
This makes users more self-reliant (G4).
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In addition to a reference, the help system provides a categorized
listing of all nodes and "thematic" pages that contain patterns for
common tasks (e.g. data visualization). This helps in plan composition
(see Section 2.6.4).

Figure 68: Screenshot of NodeBox Live with built-in help system

4.5.6 Visual results

BA4ALL Dashboard

In 2014 we presented at the "Business Analytics 4 All" meeting, a
conference on analytics and data visualization for business
professionals. We developed a case where we analyzed tweets
mentioning Telenet, Belgacom or Voo, the three biggest
telecommunications operators in Belgium. For each tweet we
calculated the sentiment score, estimated gender and extracted
keywords using Pattern (De Smedt, 2012). We made a number of
visualizations that could be parametrized based on the telecom
operator. We then combined all visualizations into an online dashboard
(Figure 69).
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Figure 69: "ba4all Dashboard", Frederik De Bleser and Tom De Smedt, 2014

Metashape

Metashape is a work based on recursive application of the superformula
(Gielis, 2003). The work was displayed at the 2013 Incubate conference
in Tilburg (NL) (Figure 70).

Figure 70: "Metashape", Frederik De Bleser, 2013
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4.5.7 Evaluation

We were able to teach preview versions of NodeBox Live during a
number of workshops. We observed students and asked them to fill out
the usability questionnaire (see Section 2.6.1).

Since the system was built on NodeBox 3, many of the usability remarks
for NodeBox 3 were similar. Users liked the strong underlying model for
data visualization. They found navigation easy and intuitive. They
remarked that the system was a nice alternative to programming.

Function Abstraction

Most novice users were unaware of the fact they could write JavaScript
code. However, they saw the potential once we showed them tutorial
material.

More proficient users with experience in JavaScript appreciated that
they could easily extend the application with their own functionality.
For example users added functionality to work with the current system
time. They remarked that it was "just JavaScript" and that they didn't
have to find "work-arounds" to let the system do what they wanted (G4).

Integrated Help

Users appreciated the built-in help system. They found it useful to have
contextual help both for the interface as well as for the nodes (G4).
Some remarked that it could be made more comprehensive.

Web Integration

Users liked the integration with the web. They remarked that they now
were able to publish interactive projects on their own site or blog.
However users had conflicting thoughts on the centralized web
environment. Some users liked that the software was entirely online
and that they didn't have to install anything, while other users didn't
want to trust their projects to a web application.
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4.5.8 Lessons Learned

Undo System

Users complained about a lack of an undo system. Since the system
runs online, and can potentially have multiple users editing on the same
page, developing a comprehensive undo system is not yet implemented.
A properly multi-user real-time system would probably need
operational transforms (Ellis, 1989).
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We are currently designing the first implementation of an immutable
data model, similar to that of NodeBox 3, which would help with
single-session undo.



4.6 OpenType.js

134

4.6 OpenType.js
One hurdle we faced when porting NodeBox Live to the web was good
support for typography. Projects like "Evil Font" (Section 3.5.1.1) require
access to the outlines of the glyphs, the letter shapes of the font. In
NodeBox 3 we accessed these glyphs through the Java 2D API. However,
HTML5 does not expose a similar API, and no third-party libraries
implementing this functionality were available.

We decided that good typographic support was essential for a
generative design tool. This led us to the design of OpenType.js, a
JavaScript library that can parse and write TrueType and OpenType
fonts (De Bleser, 2014). The library provides users with low-level access
to the outlines of the glyphs and the Unicode-to-glyph mapping. It also
provides high level access to convert a string of text to a Bézier path.
This high-level functionality is integrated in NodeBox Live using the
textpath node. The library also provides export functionality to save
fonts back out to an OpenType font file (Figure 71).

Figure 71: OpenType.js Glyph Inspector, showing outline of the "R" glyph

The project is used in a number of popular open-source and
commercial tools such as Prototypo (Mathey, 2014), FontSelf (Hoffman,
2015), Metapolator (Egli, 2013) and p5.js (McCarthy, 2014).
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4.7 Comparing Visual and Textual Programming
To evaluate program comprehension we looked at the differences
between textual programming tools (such as Processing (Reas, 2007) or
D3 (Bostock, 2011) and visual programming tools like NodeBox 3 or
NodeBox Live. There are some empirical studies by Green (Green, 1991)
(Green, 1992) that compare the usability of visual programming
languages to textual languages. In general they have not favored visual
programming languages. These studies all focus on programmers or
engineers solving mathematical problems, such as the calculation of
rocket trajectories (Green, 1996).

Our study examines if graphic designers, who by their nature work in
the visual domain, respond differently to visual programming tools than
engineers.

4.7.1 Experimental Setup

We developed a web-based application called Grasp that provides
participants with a series of exercises bundled together in a survey (see
table in Section 4.7.5. Each exercise exists in both a textual and visual
programming environment. The environments are modeled on
Processing and NodeBox 3 respectively. To avoid bias both
environments are different only in the aspects under test. They share
the same look, graphical engine and coordinate system (see Figure 72).

Figure 72: The Grasp testing environment showing the textual and visual
programming interfaces.

Before they begin the exercise, students fill in a questionnaire asking
them to rate their skill level using the 5-point Dreyfus scale (see Section
2.6.5). After that they are shown either a textual or visual environment.
Here they are asked to perform a series of operations that will take the
system from an initial state (with some existing code) to a desired state.
Controlling the initial state means we can focus on the specific concept
participants have to comprehend before they move on. For example,
the color the squares exercise teaches that the system draws shapes
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using the most recently specified fill color. Participants do not have to
know how to draw the shapes since they are already provided, but they
do have to think about the ordering of the statements. Finishing the
exercise means participants have to understand the concept of graphics
state (Press, 1985), even though they might not know the concept by its
name.

This method is called gated exercise. It requires someone to understand
a certain concept before he or she can solve it. In other words, the gate
only opens once a user discovers a certain key — only the key is not a
physical object, but a mental concept in their head. A number of puzzle
games, notably Portal, use this principle to guide player progression.

We detect if an exercise is finished by comparing the participant's
output with the desired output, pixel by pixel. We do not look at the
resulting programming code at all, which means any answer is accepted
as long as the output matches exactly. If participants are stuck they can
skip an exercise, allowing them to continue with the next exercise.

At the beginning of the survey participants are asked some
demographic questions about their experience with graphic software
and coding. Then they are randomly assigned to the textual or visual
programming environment and will not come into contact with the
other approach. Surveys are conducted with a minimal amount of initial
instructions. No outside help is given and students are discouraged
from helping each other.

4.7.2 The Programming Environment

The textual programming environment uses CoffeeScript, a procedural
programming language resembling Python that compiles down to
JavaScript. The visual programming environment uses a dataflow
computational model and a box-and-wire representation.

The exercises require the use of variables and loops but not
conditionals. There is a small amount of reference documentation on
the commands or nodes relevant to the exercise. Data visualization
exercises that require outside data show the table containing the
numbers.
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4.7.3 Concepts in Graphic Programming

Graphic programming requires comprehension of some basic concepts:
users should understand the coordinate system, the graphics state (for
textual programming), draw order, loops, mathematical expressions and
connecting data to visual aspects like position or size. Each exercise
tests the comprehension of a separate concept and works as a
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symbolical gate'', opening only when they grasp the concept. Exercises
were designed so that it was hard to complete them by random chance.

4.7.4 Survey Details

We detail the results of multiple surveys:

- One survey held in Montréal in April 2013, with 23 students
- One survey held in Valence in October 2013, with 17 students

All raw survey data is available as a MongoDB database dump (De Bleser,
2013).

We asked participants to assess their software skills according to the
Dreyfus scale into 5 levels, from novice to expert (Dreyfus, 1980). On
average, participants rate themselves as competent / proficient with
traditional graphic design applications (avg. 3.24), as novices with
textual programming (avg. 0.57) and having no experience with visual
programming (avg. 0.09). These numbers indicate that results will be
slightly skewed in favor of textual programming languages.

4.7.5 Results

The results show that a textual programming environment is faster in
almost all exercises (see Table 73 and Figures 74 and 75). If we disregard
uncompleted exercises due to skipping, participants using textual
programming were able to complete the survey in 33.80 minutes and
those using visual programming in 38.43 minutes. In other words,
students using code are almost 15% faster.

Figure 73: An overview of the Grasp exercises, average durations, in
minutes, and confidence interval (CI)
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Figure 74: Duration per exercise in seconds

Figure 75: Amount of skips per exercise

For textual programming, exercise 4 ("move the lines") was a clear
outlier in difficulty. This exercise required expanding a mathematical
expression to use subtraction (from i * 5 to i * 5 - 100). Only 8
out of 40 participants were able to complete the exercise, whereas 19
out of 35 visual programming participants were able to complete the
same exercise.

A possible reason could be the "implicitness" of math formulas in textual
programming. In visual programming each mathematical operation is
represented by a node: this unifies operation ordering and makes it
deliberate. In textual programming, math expressions are special,
following different ordering rules than function syntax. We observed
textual programming participants struggle with the ordering of the
mathematical operations, randomly trying out all kind of permutations
without finding the answer. It seems that visual programming has a
clear benefit here, even though (or perhaps because) math expressions
are not as terse.

4.7.6 Conclusion

According to our test a textual programming approach is significantly
more efficient than a visual programming approach. For almost each
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exercise, participants using textual programming completed the
exercises faster than participants using visual programming. These
findings correspond with results by Green (Green, 1991)(Green, 1992). 
With regard to programming, graphic designers do not think differently
from engineers.

However, because participants had some experience with code, and
almost none with visual programming (and its dataflow programming
model), we expected some learning curve as students struggle with the
new paradigm. Remarkably after a few exercises students are already
more self-reliant (G4) with regard to mathematical expressions, being
able to solve the problem in visual programming but not in textual
programming. We conclude that this is a benefit of a unified model
where every operation is explicit, requiring deliberate thinking and not
randomly shuffling mathematical terms.

Additionally, in our week-long workshops with visual and textual
programming languages, anecdotal evidence shows that students using
visual programming are much more self-reliant (G4). Further research
can determine whether this is because of the lack of syntax or the
programming model (imperative vs. functional).

As an added benefit, we found Grasp not only a valuable testing tool but
also a useful way of teaching programming to students. By carefully
pacing the exercises and gradually layering concepts for
comprehension, students retain a deeper understanding through
frustration and delight than by being told all the answers.

4.8 Conclusion
In this chapter we proposed a visual, functional approach as an
alternative to textual programming. We presented multiple iterations of
NodeBox, each with improvements based on real-world feedback.
Overall we demonstrated that users could produce remarkable
generative designs and data visualizations that they could not produce
with traditional applications, without (textual) programming. We argued
that a visual functional model helps in debugging complex networks,
and removes a lot of accidental complexity associated with syntax and
state.

We found that when we tried to take away as much accidental
complexity as we could, plan composition remains the primary
challenge for generative design (Spohrer, 1986). Plan composition
implies that, to reach a goal, a number of steps have to be taken in
order to reach that goal. This idea is enforced by the metaphor of the
assembly factory, where it is instrumental that the machines are
connected in the correct order.
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There exists a software paradigm that is not bound to the rules of
order. Where describing the end result (the "what") is more important
than the steps to get there (the "how"). That paradigm is constraint
programming, discussed in Chapter 5.
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Constraint Programming5
This chapter will focus on constraint programming languages. We'll
introduce constraint programming and examine how it is used for
generative design. Then we'll introduce our own contribution: Logic
Layout.

5.1 Introduction
Constraint programming is a programming paradigm that describes the
relations between variables in the form of constraints. It is a
programming paradigm that describes the logic of the computation (the
"what") without describing its control flow (the "how"). Instead of listing
the sequence of steps the program has to perform (such as in
imperative programming), in constraint programming we describe the
required constraints the program has to fulfil to be accepted as a
solution. As an example, to describe a page layout with constraint
programming we would describe the relationships between elements
on the page: their relative sizes, positions and ordering. Contrast this
with an imperative programming where we need to explicitly position
elements and the ordering of the program decides the layer order.

Constraint programming is a form of declarative programming.
Declarative programming is an umbrella term used to distinguish them
from non-imperative programming languages. It includes functional
programming, constraint programming, domain-specific languages and
logic programming. Since there is significant overlap between these
paradigms some of the related work will fall under the more general
term of declarative programming.

One problem that has permeated previous chapters is that of plan
composition (see Section 2.6.4). Even if — ideally — all accidental
complexity is removed, what remains is the composition of a plan.
Constraint programming promises a method around that by describing
the solution and letting the system figure out the plan on how to get
there.

The ordering of the chapters implies that constraint programming is
the next evolutionary step in programming and that all programs from
hereon should be expressed as constraint systems. This is not our
intent. Instead we will see how constraint programming can provide a
solution to the four goals set out in our hypothesis. Constraint
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programs get rid of statement order, a common cause of errors in
imperative programming (G4). Because we only define the properties of
the end result and not the entire process, the system can generate a
range of unexpected results (G2, G3). A well-defined constraint
program can make many automated variations that we would otherwise
have to make by hand (G1).

Constraint programming has been used in data visualization before (see
Lyra, Section 5.2.5). The question we wanted to ask is: can this approach
also be used in graphic design, where the variables are not connected
to data, but to a subjective opinion of aesthetics?

5.2 Background / Related Work
This section will show examples of related work: both applications
(Sketchpad, Lyra) and algorithms (Cassowary).

5.2.1 Design Decisions

Graphic design is essentially a search problem. It set out with a number
of requirements, dictated by the client, technical limitations and
context, that need to be met for the design to be accepted. Through a
creative process, the designer will come to a possible solution that fits
the requirements. This is one of many solutions: given a different
designer, they will come up with a different solution that also fits the
requirements.

This implies that a number of decisions in design can be arbitrary. As
long as the requirements are met the design will be accepted. For
example, a concert poster has a number of required elements: artist,
date, location. As long as the position and size of these elements fall
between certain ranges (e.g. so the text remains readable) and the
relationships between elements are maintained (artist is more
important than location) the exact placement of the elements is
irrelevant.

In generative design, this principle defines which properties can be
random (e.g. position, size, color) and which elements should be fixed
(e.g. name of the artist). We used this technique to develop the dynamic
logo of ChampdAction (see Section 3.5.3.3). Instead of defining the exact
position of every line an algorithm randomly places lines, constrained
by a maximum distance for each line. The algorithm generates random
variations of the logo. If we notice that the variations are too chaotic,
we can add additional constraints to control the process.
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5.2.2 Constraint Programming and Accidental Complexity

Constraint programming can potentially reduce many complexities
encountered in imperative and functional programming. For example,
in the NodeBox 1 tutorial (see Section 3.3) we talked about the Painter's
Model as a metaphor for thinking about how the computer draws
elements on screen. Instructions that appear first in the code are drawn
below later instructions. As a consequence the Painter's Model marries
the ordering of statements with the layering of elements on the screen.
This is an example of accidental complexity: we wanted to express the
relationship between the elements, but are required to restructure our
program to do it. Contrast this with constraint programming, where we
can directly express a is-on-top-of relationship between the elements
and let the execution engine figure out in which order it needs to draw.
We'll explore this example more when we talk about the Cassowary
constraint solver and Logic Layout.

However some problems are clearly imperative, and benefit from being
expressed as such. For example if we have an automation job, the
ordering of the steps in the job is predefined and the program should
reflect that. A constraint program that describes the interdependencies
between the job steps would only complicate the description. In
contrast, some problems don't have a clear ordering. When we discuss
layout there is no clear plan on which elements to place first; they are
all interdependent. Therefore it is our desire to open up the discussion
on constraint programming and contribute a practical implementation.

5.2.3 Critique of Constraint Programming

Because CPUs run procedurally but our programs are written
declaratively, a transformation step is necessary. To be executed,
constraint programs need to run through some kind of engine or solver
(such as Cassowary, described below). This implies that the source
program and what gets executed on the CPU differ significantly. This
makes debugging and tracing of declarative programs difficult (Pereira,
1986)(Shapiro, 1983)(Wu, 2005)(Freudenthal, 2010). In other words,
because of the large abstraction gap between the program and the
machine results can be unexpected.

In exact sciences this property is undesirable. For designers and artists
however, unexpected results and randomness are a constant source of
inspiration. For example, Leonardo da Vinci used the structure of
corroded walls as inspiration for landscapes (Chastel, 1990). That is why
we speculate that this approach will be especially successful for
creatives.
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5.2.4 Sketchpad

Sketchpad (Sutherland, 1964) was a revolutionary design application
written by Ivan Sutherland in 1963 as part of his PhD thesis (see Figure
76). It introduced many concepts still used in human-computer
interaction. It is considered the ancestor of computer-aided design
(CAD) and computer graphics. The idea of the graphical user interface
(GUI) was derived from Sketchpad.

Sketchpad allowed the user to constrain the geometric properties of
the design. For example, you could indicate that two lines needed to be
perpendicular, or that they needed to be equal length. The design
would then automatically update, taking the constraints into
consideration.

The major feature which distinguishes a Sketchpad drawing from a paper
and pencil drawing is the user's ability to specify to Sketchpad
mathematical conditions on already drawn parts of his drawing which
will be automatically satisfied by the computer to make the drawing take
the exact shape desired. — Sutherland

Sketchpad's approach of visually defining constraints guided the
development of Logic Layout.

Figure 76: Dr. Ivan Sutherland using Sketchpad, 1963
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5.2.5 Lyra

Lyra is an interactive environment for designing customized
visualizations without writing code. (Satyanarayan, 2014) The design of
Lyra is inspired by visualization grammars such as the Grammar of
Graphics (Wilkinson, 2006), JavaScript-based parametric visualization
libraries such as Protovis and D3, and data-driven drawing tools by Bret
Victor (Victor, 2013).

Figure 77: Screenshot of Lyra

Lyra follows the pipeline process described in the Grammar of
Graphics. What makes Lyra unique is that it attempts to do this using a
purely visual interface (see Figure 77). Visual shapes can be created by
dragging and dropping them from the toolbar. Data can be bound to
visual shapes by dragging it to the desired property. Lyra served as an
inspiration for Logic Layout. Instead of binding shapes to data we
researched how they could be bound to user-defined "aesthetic"
parameters.

5.2.6 Cassowary constraint solver

Cassowary is an incremental constraint solving algorithm (Badros,
2001). It was designed to describe layouts in user interface applications,
although it can solve any kind of linear system. Because GUIs frequently
need to adapt to changes by the user, the algorithm can solve systems
of constraints incrementally and efficiently. It uses the dual simplex
method, a popular algorithm for linear programming (Dantzig, 1955). 
Constraints in Cassowary can either be requirements or preferences.

The Cassowary algorithm is used in Auto Layout, the layout engine for
OS X and iOS, introduced in 2011 (see Figure 78). It also forms the basis
of Constraint Cascading Style Sheets (CCSS), an extension of Cascading
Style Sheets (CSS). Constrained CSS, and its successor Grid Style Sheets
(GSS), has been included in The Grid, a commercial content
management system. In Logic Layout we use the Cassowary algorithm
to solve constraints between visual elements on the page.
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Figure 78: Screenshot of Auto Layout dialog box in Xcode

5.3 Logic Layout
Logic Layout is an interactive design application that uses ranges and
constraints to create multiple design variations. It resembles a
traditional what-you-see-is-what-you-get (WYSIWYG) design
application like Adobe Illustrator. A toolbar contains a number of
primitives that can be added to the page. Once added, elements can be
dragged across the page and manipulated interactively or using a
property panel. Relationships between elements can be created by
connecting a line between them (see Figure 79).
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Figure 79: Screenshot of the Logic Layout application

The aim of Logic Layout was to get rid of as many accidental complexity
as possible. It no longer requires user to learn textual code syntax
(Chapter 3) or come up with a plan (Chapter 4). Instead users place
elements using direct manipulation and create constraints through
drag and drop. Extra information about elements can be configured in a
floating property panel (see Figure 79). 

5.3.1 User Interface

Logic Layout is divided in three logical sections. The toolbar on the top
houses shapes that can be dragged onto the canvas, as well as global
properties like background color and grid snapping. The central panel
contains the viewer where users can directly manipulate graphical
shapes. On the left and right side of the viewer are the variations, a
random selection of possible solutions to the design problem. Because
the starting scene doesn't use random ranges, these variations will be
identical initially.

To create simple designs, users drag shapes from the toolbar onto the
canvas. There they can interactive drag and resize shapes using
handles. The property panel allows control over properties like fill
color, text size or element ordering.
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5.3.2 Random Ranges

In fixed-mode, Logic Layout works similar to a traditional vector
graphics application like Adobe Illustrator. Properties can be modified
either by dragging their handles, or by changing the values in the
property panel. We call this fixed-mode because we specify a single
fixed value for each property of the shape (e.g. the text size is 24 points).

Each property in the system can be set to a second mode, called
"random range". When set to this mode, we no longer specify a single,
fixed value for the property, but a range of values where the property
has to fall between. The system is to free to choose a random value
inside of this range (see Figures 80 and 81).

Figure 80: Fixed value vs random range. Draggable handles allow you to
modify the range of positions.

Figure 81: Fixed value vs random width / height. The inner and outer box
specify minimum and maximum sizes.



5.3.2 Random Ranges

151

Because the element now has dynamic properties we no longer have a
single determined outcome, but many possible variations. In each
variation shapes will be placed in a different position or have a different
size or color, or a combination of all of these (see Figure 82).

Figure 82: "Random faces" created in Logic Layout

5.3.3 Element Count

When we specify a random range for the position of an element, it can
appear in many positions, as shown in the variations canvases. By
adding a count property to an element we're not limited to showing it a
single time on the page. The shape can now appear on the page many
times (see Figure 83).

Figure 83: Element count of 1, 10 and 100

The count property can create many elements out of a single element.
It turns this one-element composition into a recipe for a more complex
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design. In essence it is an amplifier for the manual process, a system
that can repeat our actions while allowing for variations through
random ranges.

5.3.4 Randomness Generation

The concept of randomness is a vital part in the system. Randomness
allows for different variations to be produced. However we want these
variations to be stable: they shouldn't change without parameters being
changed. Because we re-render as much as 10 times per second,
JavaScript's built-in random generator would cause the variations to
flicker continuously, making it hard to judge a specific variation. In
short, even though we need a source of randomness, we want to have a
deterministic random process that returns the same pseudo-random
results every time.

That's why we seed the random generator with the same value each
time we run the render. We use an RC4-based pseudo random number
generator (PRNG) which we seed with a different index for each
variation. This causes changes to retain a certain amount of stability
while still generating enough diversity for the different variations.
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5.3.5 Constraints

So far the system we described deals with the properties of individual
elements. However design is about exploring the relationships between
elements on the page (Hannah, 2002). Examples of those relationships
are: text elements shouldn't overlap so they remain readable (see Figure
84). Or elements should follow a certain visual hierarchy: one element
always needs to be bigger than another element.

Constraints allow us to specify these relationships between elements.
They can indicate that one element needs to be the same size of
another element, or that two elements should have the same vertical or
horizontal position. It can refer to size, requiring that one element
needs to be bigger than another element. It also can refer to color,
specifying that elements need to be darker or lighter than their
companions.

In Logic Layout we implement constraint solving using the Cassowary
algorithm. By default, however, constraint solvers are designed to
produce a single, optimal outcome. The solver uses a minimization or
maximization procedure that gradually converges to an optimum. This
is clearly undesirable in our application since we want many variations
that all adhere to the given constraints. We solved this issue by
specifying for each variation a random constraint that fell within the
bounds of the given random range. We made this a soft constraint so
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that the system is not required to obey it. This solution gave
satisfactory results.

The Cassowary algorithm is suitable for Logic Layout since it uses an
incremental approach where it doesn't have to full re-solve the linear
system for every change. As an additional speed optimization we make
a distinction between properties that do not participate in a constraint
relationship and elements that do. Only elements that use constraints
are included in our constraint solver.

Figure 84: Logic Layout — defining the "above" constraint

5.3.6 Implementation

Logic Layout is implemented as a web application. It uses HTML, CSS
and JavaScript. The system has no explicit backend. Instead, data is
persisted in Firebase, a real-time "Database As a Service" (DAAS) that
maintains a persistent connection through WebSockets (Lubbers, 2010). 
Apart from Firebase and seedrandom, a random number generator, no
external libraries or frameworks are used.

The main canvas interface is drawn using the immediate-mode GUI
paradigm (Muratori, 2005). This makes it possible to create a very
dynamic user interface that reacts to complex user events (e.g.
shift-clicking one object while dragging another).
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Rendering of the variations happens in a separate thread using Web
Workers. This keeps the application responsive even for large
documents with many elements.
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5.4 Visual Results
Our primary goal was to give the same level of ease of use and control
you except in a traditional graphics application while augmenting the
abstraction to introduce randomness, repetition and constraints. To
asses this goal we created a number of visual examples ourselves. Some
of these are reproductions of examples used in imperative
programming to show that we can create the same results without
programming. Other examples are of existing poster designs but
augmented with random variations. Finally some examples are
completely new.

5.4.1 Pita Style

This example attempts to recreate the typical style of modern design
posters such as those found on trendlist.org. It was originally conceived
by Lucas Nijs, developed as a JavaScript application, and then ported to
Logic Layout. It uses randomized colors, thick borders and abstract
geometric shapes. The results (Figure 85) mimic this style.

Figure 85: "Pita Style", Frederik De Bleser & Lucas Nijs, 2016

5.4.2 Tempo Moderni

Tempo Moderni is a spoof on Italian movie posters and features "disco
lights" in the background (Figure 86). Text elements are constrained
through "above" constraints so that they are displayed in logical order.
Note that only a single circle has to be present on the layout: all the rest
are defined by randomly positioning and giving the object a high count.
The snapping feature makes sure the elements fall in a grid.
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Figure 86: "Tempo Moderni", Frederik De Bleser, 2016

5.4.3 Various Work

Various other sketches created with Logic Layout (Figure 87).

Figure 87: Logic Layout — selection of works

5.5 Evaluation
At its base the application works like traditional vector applications.
However, because elements can be randomly placed and constrained,
we are able to generate variations more efficiently (G1). This also allows
us to quickly explore a broader approach (G3). Lastly, because the
application works similarly to applications familiar to graphic designers
and does not require programming or plan composition, users should
be more self-reliant (G4).
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5.6 Conclusions
We've shown that we can take a traditional direct manipulation
interface and augment it with ranges and constraints to accomplish a
range of generative designs that would normally require a programming
approach. By basing our software off of traditional applications, Logic
Layout makes generative design more accessible to a broader audience
of non-technical people (G4). Through examples we demonstrated the
breadth of the tool.

We have many ideas for improving Logic Layout. First off in generative
design we can wield more instruments than the static and random
value. We foresee options for sequential values, so that successive
shapes can grow or shrink (or become darker, or move positions).
Another feature is to let the system pick from a set of options: in the
case of colors users could specify a color palette for the system to
choose from. Lastly, all of these value types could be stored in a
centralized way and reused throughout the project (much like variables).

An exciting challenge is to connect the properties of shapes to external
data to create data visualizations. Again, instead of choosing between
fixed and random values, users would control the properties of a shape
based on the values of a database column. Users could drag the values
onto the property of the shape of their choosing. This model matches
Lyra with the exception that we can generate many different
visualizations where the user can choose the most appropriate one.

Finally we'd like to explore models for interaction, for example by
specifying a relationship between our shapes and the position of the
mouse.
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Conclusion6
In this thesis we've demonstrated the impact of generative design on
artists and designers. We've contributed a number of software
applications that allow designers and artists to be more efficient, more
creative, explore a broader approach and be self-reliant.

Summary
In chapter 3, we looked at imperative programming. We discussed
existing tools such as Design By Numbers and Processing, then
introduced NodeBox 1. We showed work created with the tool, both by
students, design professionals, and ourselves. We discussed how
teaching data structures helped students use the tool. We concluded
that this approach was extremely powerful, although the syntax of the
language presents a barrier that is difficult for designers to overcome.

In chapter 4, we discussed how functional programming could help
overcome the syntax barrier. First we discussed existing languages and
tools such as Clojure and Grasshopper. Then we introduced NodeBox 2, 
a visual node-based language. We showed work created with the tools
and described its mechanism for generating variation: copy stamping.
We concluded that this mechanism was difficult to use. We presented
an alternative approach in NodeBox 3. Here the fundamental building
block is the list, and variation is created through list matching. We saw
how that makes debugging easier. NodeBox Live brought this approach
to the web. It also got rid of subnetworks, instead using the function as
the main abstraction, which resulted in a hybrid node-code approach.
When we compared textual vs visual programming for beginning users,
we concluded that visual programming was not necessarily more
efficient or easier. However, after the initial learning curve, in depth
interviews and visual results indicate an improvement over textual
programming for more proficient users. In this chapter we also briefly
introduced DataPipe, a tool for batch processing of large data sets, and
OpenType.js, a JavaScript library for parsing and exporting fonts on the
web.

In chapter 5, we examined constraint programming as a solution to
issues with plan composition. We saw that constraint programming
provides a way of describing the what and not the how. We saw existing
solutions for layout (Cassowary, Auto Layout) and data visualization
(Lyra). We presented Logic Layout, a visual editor for generative design
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that works through direct manipulation. We saw how random ranges, 
element counts and constraints can help augment a simple
drag-and-drop design application to a complex generative design tool.

Technology as an Amplifier
We've all witnessed how Twitter was used in the Arab Spring to widely
broadcast messages of dissent. Technology can magnify the impact of
our actions. It allows us to communicate in real-time with friends
across the world or broadcast messages to millions of followers. We're
reminded of Steve Jobs' famous saying that "computers are like a bicycle
for our minds". They allow us to take our less-than-optimal way of
creating, communicating and sharing and, through the computer, vastly
expand our capabilities and reach.

This amplifying principle is the core tenet of generative design: to use
the computer as an amplifier for the manual process. At its most bare it
is about using the minimal set of physical actions (mouse movements
and keyboard strokes) to have maximum impact (a successful design or
product). We've seen in the preceding chapters how generative tools
can multiply the amount of work we can produce compared to a manual
approach.

In imperative programming we use code as a direct way to provide
instructions to the machine. These instructions can contain statements
of repetition, allowing us to loop over a list of data, the pixels in an
image, or the word in a text. The process of repetition instruction
allows us to produce more output than we could possibly produce by
hand.

In visual functional programming systems, we use the amplifying
principle in the same way as it is used in a factory assembly line: by
setting up a series of transformations, from the input data all the way to
the visual result. Each building block executes simple instructions, but
in combination can produce radical transformations. Once the process
is built, we can feed it in new data (e.g. through web services) and
produce new output, without redoing the manual setup work.

In constraint programming we saw how an ordinary drag-and-drop
interface (which is marginally faster than the by-hand approach) can be
augmented to gain access to the core principles of generative design.
Using random ranges and repetition we can create many target
elements starting from a single source shape, thereby multiplying our
manual effort. In addition, the system produces many variations for us
to pick from. We use constraints to specify the relationships between
elements, avoiding much of the manual work in picking the interesting
designs from a large set of unsuitable outputs.
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These amplifying techniques go beyond repetition: we're not required
to give the computer a fixed set of instructions and values to follow
perfectly every time. We can greatly expand the range of creative
possibilities if we integrate randomness into the process.

Randomness as Creative Catalyst
Throughout this thesis we argued that randomness was an important
factor in designing generative systems. It allows us to break free from a
rigid procedure the computer has to follow and by allowing some
leeway, produce results that are sometimes surprising. We've seen that
these novel and unexpected solutions can inspire our own creativity.

Randomness is blind. A random procedure only generates. There is no
evaluation step to determine which results are better. In fact, we are
the evaluation step. By judging the variations we steer the process,
tweaking random ranges or venturing into new directions.

We saw the need for randomness to be controlled through seeding. 
This allows us to explore many variations efficiently and pick the ones
we like. In NodeBox 3 and NodeBox Live, this manifests itself through
an explicit seed parameter which is included wherever we use a
random procedure. We recommend this approach to other tool
builders.

One of the limitations of randomness is that it has no frame of
reference: all values are equally likely. In unbounded randomness, the
size of a rectangle can be 5, 42 or 100, but just as well 0, -5000 or 1
million. In contrast, as designers we often know from context which
values are suitable. This is both the strength of randomness (by
producing unexpected results) and its weakness (by producing many
unusable or erroneous results).

Randomness is appealing because it can produce surprising results with
very little effort. To go beyond randomness, we can look at machine
learning techniques that use varying degrees of knowledge to produce
"smarter" results.

Computer Aided Design
The term computer aided design (CAD) started appearing around the
mid 1970s. Early CAD software started out as a direct port of the
process of manual drafting to the computer. Later the term also
encompassed functionality to improve the quality of the design,
automatically generate a bill of materials, do automatic layout in
integrated circuits and much more.
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All of these tasks are type 1 automations (see Section 2.1): they help in
automating production challenges that would be tedious to do by hand.
We would like to see the meaning of the term "computer aided design"
expanded to encompass all types of automation. In other words,
computers aid in the design not only by automating production
challenges but by helping solve creative challenges as well.

One promising area of research for design automation is machine
learning. With the advent of faster processing using the GPU, deep
learning systems (which mimic the web of neurons in the human brain)
are becoming commonplace for individual use. The techniques are used
in image recognition, voice recognition and machine translation. Deep
learning algorithms have already been used to create artistic images
that mimic existing styles (Gatys, 2015).

Techniques such as Bayesian inference have been used to learn and
replicate design patterns. Work by Talton for example uses Bayesian
grammar induction to learn design patterns, which can be used to
synthesize novel designs (Talton, 2012).

We see a shift from the reductive technique of trying to "understand
the world" by decomposing design in its constituent parts to a holistic
process where all parameters are weighted together through
algorithms. This weighted technique often results in a "black box"
rather than clear, human-readable rules, making it increasingly harder
to deduce what the system "knows". Just as we've seen in constraint
programming, this can make it hard to debug. However, we argue that
this opaqueness does not limit its usefulness.

Hybrid Tools
Throughout the thesis we built up a number of programming tools
based on lessons we learned from the previous iteration of the tool.
Looking back at this journey, one could argue that constraint
programming is the best of all available solutions.

However, constraint programming is not a panacea. It is not the right
tool for every job. We see constraint programming as an interesting and
largely unexplored paradigm for creative tools. The fundamental
algorithms are well-researched and fast enough to be used in
interactive applications. We found it to be very useful for layout
experimentation, where there is no set order to the steps to perform.

On the other hand, the lack of explicit ordering makes it less suitable
for problems that rely on a fixed sequence of steps such as workflow
automation. An imperative approach is more appropriate here. In
addition we found debugging visual results difficult, especially when the
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number of constraints became large. Since there are no sequential
steps leading up to the final result, we can't examine the output of each
operation such as in NodeBox Live. This reminded us of "spaghetti
code", a typical issue with novice programmers.

It is best to look at all programming paradigms as tools in a generative
designer's toolbox, ready to be wielded at the right moment. Ideally,
new tools could be integrated into a hybrid solution where one can
switch paradigms as needed to cover a certain aspect of the design.
NodeBox Live's function abstraction seems a good fit for combining
imperative, functional and constraint programming through a common
API.

Beyond Usability Research
Just as the tools for generative design rapidly expand, so should the
testing techniques for usability adapt as well. Ideally we would like to
compare widely different techniques (based on deep learning, genetic
algorithms, and fixed procedures) with traditional applications like
Photoshop. However we speculate that even if the task is similar, the
interaction with these systems and the resulting output will be so wildly
different as to make usability testing unfeasible (Olsen Jr, 2007). Instead,
we need to look beyond A/B measuring techniques to test different
approaches.

To formulate recommendations for current and future systems we use
Myers' framework (Myers, 2000) to make suggestions around a number
of themes.

Threshold and Ceiling

The threshold determines how difficult it is to learn the system. The
ceiling is what can be achieved with the system. Ideally all tools would
have a low threshold and high ceiling. In reality however, most tools
either cater to beginners (low threshold — low ceiling) or professionals
(high threshold — high ceiling). In other words, users will "grow out" of
simpler systems and adopt systems best suited for experts.

Since all users will start out at the bottom having a low threshold is
important for everybody. Here, reducing accidental complexity (e.g.
easy installation, good documentation, simple errors,...)  is essential.

Expert users can be accommodated by designing a hybrid approach.
This entails giving experts the tools that you use yourself to develop the
tool. So, even though the primary interface might be visual (such as
NodeBox Live), it also should have a scriptable interface. In NodeBox
Live, this means that nodes can be coded both visually and textually. It
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also means that the system can be accessed through an API, making
integration and automation possible.

Path of Least Resistance

Every UI will make some things easier to do than other things. This is a
simple application of Fitts' Law (MacKenzie, 1992): there is only so much
space to place buttons and menu options. In Myers' view — in the
context of user interface design — this technique can be used to our
advantage to let users do the "right thing".

In design, however, we have to be aware of this. This finding implies
that there is a "right way" to do things, which automatically guides
designs in a certain direction, either out of laziness or as a way to
manage complexity for beginners. We've seen many design students
hastily submit their classwork with a superficial adaption of a built-in
example. For creative professionals, this property is generally
undesirable: it can result in certain shapes or effects being overused,
making designs coming from a certain application instantly
recognizable.

Ideally the principle of least resistance should be applied to aspects of
the tool that are not directly tied to its creative output. For example,
the organisation of the project files is something that a tool can handle
automatically to avoid common mistakes.

Predictability

Predictable tools, given the same input, always produce the same
output. This property is desirable for generative tools as well. On the
surface this doesn't seem to integrate well with the principle of
randomness generation. That is why we introduce the concept of
random seeding in our tools. This still allows the power of random
variations but gives control over where and how they are applied.

Moving Targets

Tools are always built in context. They are designed to run on a range of
machines that consist of physical hardware, and this needs to guide
how we develop our tools. This also implies that this context can shift.
We witnessed first-hand the shift from the desktop to the web, and
adapted our tools to follow.

6.1 Real-World Usage
A good indicator of success is the adoption of the tools in real-world
use. NodeBox 3 currently has over 1200 monthly active users (as
reported by our software update mechanism). The most active users
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come from the USA, Great Britain, Germany, France, Italy, Belgium,
Russia, Korea, Canada and Poland. The NodeBox community has an
active forum with thousands of posts where users help out other users.
Because our projects are free software, users are free to make
contributions. OpenType.js has over 100 issues reported and more than
60 pull closed pull requests.

Our software is being used to experiment with generative design and
create commercial visualizations, such as the "Color of World Flags"
project by Nicholas Rougeux (Figure 88).

Figure 88: "Colors of World Flags", Nicholas Rougeux, 2015

NodeBox 3 and NodeBox Live are taught by teachers outside of the
research group worldwide and is part of the curriculum at a number of
art schools, for example the Rhode Island School of Design (RISD).

Learning Process
Understanding the learning process is key in developing tools. We
continue to use and advocate the Dreyfus framework to understand the
needs of users with different levels of skill. The temptation we have as
tool builders is to force users to understand the conceptual model of
the software, believing it is essential for understanding the tool, which
it is. However, we now know that novices just want to get things done
without being overloaded by what they believe is unnecessary theory.
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Consequently, tools that are designed to be free-form should also
provide built-in template graphics for users to get started. Although the
tool can — in theory — produce any kind of graphic, novices need a
point of reference to get started. Only after users get over that initial
hurdle will they understand or seek the knowledge to progress beyond
build-in template graphics.

On the other side of the spectrum are the experts, who need tools that
grow with them. This implies planning for people to outgrow the tool at
some point. To provide for that, tools should ideally provide
documentation on their data format and allow scripting through open
APIs so that the tool can be driven from other tools.

Object-Oriented Programming
In this thesis we focused on the imperative, functional and constraint
programming paradigms. What about object-oriented programming,
which is ubiquitous in the industry?

Programming paradigms can be viewed along multiple "axes". The axis
we chose is the imperative vs. declarative axis. Imperative languages
focus on the "how", whereas declarative language (of which functional
and constraint programming are descendants) focus on the "what".
Object-oriented programming falls on the imperative side of this axis.
However, its core idea is about the structure it can provide to large
programs.

In NodeBox 1 we generally don't have the need for the kind of
organizational methods object-oriented programming provides. Typical
student programs are small and can do a lot with simple lists and maps.
We find that in larger programs, students typically do use classes, so we
explain them when needed.
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In NodeBox 3 and NodeBox Live we prefer to avoid classes and use
universal data structures like lists and maps. This has the benefit that all
our data operations (e.g. filter,  combine and pick) can work on
lists of any type. In addition we found that data hiding through private
attributes and getters / setters hinders debugging. By using
general-purpose lists and maps we can provide inspection tools that
work everywhere.

Show me your flowcharts and conceal your tables, and I shall continue to
be mystified. Show me your tables, and I won’t usually need your
flowcharts; they’ll be obvious. — (Brooks, 1975)
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Meta Tools
Every tool will come with a path of least resistance, making certain
things easy and other things hard. This will ultimately guide what we
create with these tools. If your tool provides a star shape but not a
heart shape, we will see on average more stars than hearts being
created. To wit:

"We become what we behold. We shape our tools and then our tools shape
us" — Marshall McLuhan (Culkin, 1967)

To overcome this problem it is useful to see generative tools as
essentially "meta tools". That is, instead of seeing e.g. NodeBox 1 as the
tool to create the design, we can see a certain ruleset, defined within
NodeBox as the tool. In other words we convert the problem space to a
solution space first, by defining a domain-specific language within our
meta-tool. Once we have this domain-specific language, we can explore
solutions within this tool. In essence, we are building different tools for
each project.

This way of thinking is a fundamental shift forwards in how we
approach tools. Traditional graphic tools such as Photoshop already
provide a solution space, and if that space doesn't fit your idea, you can
either choose a different tool or a different idea. Often this leads to
self-censorship, limiting their ideas to what they deem possible. By
regarding tool-building as the first endeavour in every project,
designers are no longer required to force their idea in an existing
framework of thought. Instead they are free to make up their own rules.
That's why we strongly advocate adopting a meta-tool approach. Tool
building is too important to be left at the hands of programmers.
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